Part Number Hot Search : 
9010A EPJ4018 MEGA32U RP336 D6562 TLE4266G 5236B EMK23
Product Description
Full Text Search
 

To Download RICOHCOMPANYLTD-RP504L221D-TR Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  rp504x series 600ma ? step-down dc/dc converter with synchronous rectifier no.ea-259-110530 1 outline the rp504x series are low supply current cmos-based 600ma ? step-down dc/dc converters with synchronous rectifier. each of these ic s consists of an oscillator, a reference voltage unit, an error amplifier, a switching control circuit, a mode control circuit(ver.a, d), a soft-start circuit, a "latch type" protection circuit, an under voltage lockout (uvlo) circuit, and switching transisto rs. a low ripple, high efficiency synchronous rectifier step-down dc/dc converter can be eas ily composed of this ic with only an inductor and capacitors. since packages are sot-23-5, dfn1616-6b, dfn(plp)1216-6f , high density mounting on boards is possible. as protection circuits, the rp504x series contain a current limit circuit which limits the lx peak current in each clock cycle, and a latch type protection circuit which latche s the built-in driver to the off state if the load current exceeds the limit value or the output short continues for a specified time (the protection delay time). the latch protective circuit can be released by once putting the ic into the standby mode with the ce pin and then into the active mode, or, by turning the power off and back on. setting the supply voltage lower than the uvlo detector threshold can also release the latch protective circuit. in terms of the output voltage, since the feedback resistances are built-in, the voltage is fixed internally. 0.1v step output can be set by laser-trim and 1.5% or 18mv tolerance depending on the output voltage is guaranteed. by inputting a signal to a mode pin, th e rp504x series can be switched between pwm/vfm auto switching control and forced pwm control. pwm/vfm auto switching control switches to high-efficiency vfm mode in low output current. forced pwm control switches to fixed-frequency forced pwm mode for reducing noise in low output current. ? )this is an approximate value, because output cu rrent depends on conditions and external parts. features ? supply curre nt ...................................................... typ. 25 a(at vfm mode, at no load) ? standby curr ent .................................................... max. 5 a ? input voltage range ............................................. 2.3v to 5.5v (v out R 1.0v) ? output voltage rang e........................................... 0.8v to 3.3v (with a 0.1v step) ? output voltage accuracy....................................... 1.5% (v out 1.2v), 18mv (v out <1.2v) ? temperature-drift coefficient of output voltage ... typ. 40ppm/ c ? oscillator frequen cy ............................................. typ. 2.25mhz ? oscillator maximum du ty cycle ............................ min. 100% ? built-in driver on resi stance ............................... typ. pch. 0.34 ? nch. 0.43 ? (v in =3.6v) ? uvlo detector thre shold..................................... typ. 2.0v ? soft start ti me....................................................... typ. 0.15ms ? l x current limi t ..................................................... typ. 900ma ? latch type protection circuit ................................. typ. 1.5ms ? auto discharge functi on ........................................ only fo r d version ? two choices of switching mode............................ dfn1616-6b and dfn(plp)1216-6f are available in adjustable switching control options from pwm/vfm auto switching type or forced pwm type by using mode pin. sot-23-5 is available in fixed switchi ng control options: pwm/vfm auto switching type for b version or forced pwm type for c version. ? packages .............................................................. sot-23-5, dfn1 616-6b, dfn(plp)1216-6f
rp504x 2 applications ? power source for battery-powered equipment. ? power source for hand-held communication equipment, cameras, vcrs, camcorders. ? power source for hdd, portable equipment. block diagrams rp504xxxxa rp504xxxxb switching control current protection soft start vref lx v out v in ce gnd oscillator pwm current feedback ramp compensation uvlo mode chip enable switching control current protection soft start vref lx v out v in ce gnd oscillator pwm current feedback ramp compensation uvlo mode chip enable
rp504x 3 rp504xxxxc rp504xxxxd switching control current protection soft start vref lx v out v in ce gnd oscillator pwm current feedback ramp compensation uvlo mode chip enable switching control current protection soft start vref l x v out v in ce gnd oscillator pwm current feedback ramp compensation uvlo mode chip enable
rp504x 4 selection guide in the rp504x series, output voltage, mode control, auto discharge function, and package for the ics are selectable at the user?s request. product name package quantity per reel pb free halogen free rp504nxx1$-tr-fe sot-23-5 3,000 pcs yes yes rp504lxx1$-tr dfn1616- 6b 5,000 pcs yes yes rp504kxx1$-e2 dfn(plp)1216-6f 5,000 pcs yes yes xx : $ : the output voltage can be designated in the range from 0.8v(08) to 3.3v(33) in 0.1v steps ? 1 . designation is possible in the range fr om 0.8v to 3.3v with a step of 0.1v (refer to the marking information) designation of mask option symbol package mode control auto discharge function a dfn1616-6b dfn(plp)1216-6f yes (?h? forced pwm, ?l? pwm/vfm automatic shift) no b sot-23-5 no (pwm/vfm automatic shift) no c sot-23-5 no (forced pwm) no d dfn1616-6b dfn(plp)1216-6f yes (?h? forced pwm, ?l? pwm/vfm automatic shift) yes auto-discharge function quickly lowers the output voltage to 0v , when the chip enable signal is switched from the active mode to the standby mode, by releasing the electric al charge accumulated in the external capacitor. ? 1) 0.05v step is also available as a custom code. pin configurations ? sot-23-5 ? dfn1616-6b ? ? dfn(plp)1216-6f top view 1 4 5 2 3 (mark side) top view 3 4 2 5 1 6 bottom view 1 6 2 5 3 4 ? top view 3 12 5 64 bottom view 1 3 2 5 4 6
rp504x 5 pin descriptions ? rp504nxx1b, rp504nxx1c : sot-23-5 pin no. symbol description 1 v out output pin 2 gnd ground pin 3 l x l x switching pin 4 v in input pin 5 ce chip enable pin ("h" active) ? rp504lxx1a, rp504lxx1d : dfn1616-6b pin no. symbol description 1 ce chip enable pin ("h" active) 2 mode mode control pin (?h? forced pwm, ?l? pwm/vfm automatic shift) 3 v in input pin 4 l x l x switching pin 5 gnd ground pin 6 v out output pin ? ) tab is gnd level. (they are connect ed to the reverse side of this ic.) the tab is better to be connected to the g nd, but leaving it open is also acceptable. ? rp504kxx1a, rp504kxx1d : dfn(plp)1216-6f pin no. symbol description 1 v in input pin 2 mode mode control pin (?h? forced pwm, ?l? pwm/vfm automatic shift) 3 ce chip enable pin ("h" active) 4 v out output pin 5 gnd ground pin 6 l x l x switching pin
rp504x 6 absolute maximum ratings (gnd=0v) symbol item rating unit v in v in input voltage -0.3 to 6.5 v v lx l x pin voltage -0.3 to v in + 0.3 v v ce ce pin input voltage -0.3 to 6.5 v v mode mode control pin voltage -0.3 to 6.5 v v out v out pin voltage -0.3 to 6.5 v i lx l x pin output current 900 ma power dissipation (sot-23-5) ? 420 power dissipation (dfn1616-6b) ? 640 p d power dissipation (dfn(plp)1216-6f) ? 385 mw t a operating temperature range -40 to 85 c t stg storage temperature range -55 to 125 c ? ) for power dissipation, please refer to package information. absolute maximum ratings electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause the permanent damages and may degrade the life time and safe ty for both device and sy stem using the device in the field. the functional operation at or over these absolute maximum ratings is not assured. recommended operating conditions (electrical characteristics) all of electronic equipment should be designed that the mounted semiconductor devices operate within the recommended operating conditions. the semiconductor devices cannot operate normally over the recommended operating conditions, even if when they are used over such conditions by momentary electronic noise or surge. and the semiconductor de vices may receive serious damage when they continue to operate over the recommended operating conditions.
rp504x 7 electrical characteristics ? rp504xxxxa, rp504xxxxd (ta=25 c) symbol item conditions min. typ. max. unit v out 1.0 2.3 5.5 v in operating input voltage v out <1.0 2.3 4.5 v v out 1.2v 0.985 1.015 v out output voltage v in =v ce =3.6v or v set +1v v out <1.2v -0.018 +0.018 v v out / t output voltage temperature coefficient -40 c < = < = c 40 ppm/ c f osc oscillator frequency v in =v ce =3.6v or v set +1v 1.95 2.25 2.55 mhz i dd1 supply current 1 v in =v ce =5.5v, v out =v set 0.8 400 800 a v mode =0v 25 40 i dd2 supply current 2 v in =v ce = v out =5.5v v mode =5.5v 400 800 a i standby standby current v in =5.5v,v ce =0v 0 5 a i ceh ce "h" input voltage v in =v ce =5.5v -1 0 1 a i cel ce "l" input voltage v in =5.5v,v ce =0v -1 0 1 a i modeh mode "h" input current v in =v mode =5.5v -1 0 1 a i model mode "l" input current v in =5.5v, v mode =0v -1 0 1 a i vouth v out "h" input current ? 1 v in =v out =5.5v,v ce =0v -1 0 1 a i voutl v out "l" input current v in =5.5v,v ce =v out =0v -1 0 1 a i lxleakh l x leakage current "h" v in =v lx =5.5v,v ce =0v -1 0 5 a i lxleakl l x leakage current "l" v in =5.5v,v ce =v lx =0v -5 0 1 a v ceh ce "h" input voltage v in =5.5v 1.0 v v cel ce "l" input voltage v in =2.3v 0.4 v v modeh mode ?h? input voltage v in =v ce =5.5v 1.0 v v model mode ?l? input voltage v in =v ce =2.3v 0.4 v r low nch on resistance ? 2 v in =3.6v,v ce =0v 30 ? r onp on resistance of pch tr. v in =3.6v, i lx = ? 100ma 0.34 ? r onn on resistance of nch tr. v in =3.6v, i lx = ? 100ma 0.43 ? maxduty oscillator maximum duty cycle 100 % t start soft-start time v in =v ce =3.6v or v set +1v 150 310 s i lx lim lx current limit v in =v ce =3.6v or v set +1v 700 900 ma t prot protection delay time v in =v ce =3.6v or v set +1v 0.5 1.5 5 ms v uvlo1 uvlo detector threshold v in =v ce 1.9 2.0 2.1 v v uvlo2 uvlo released voltage v in =v ce 2.0 2.1 2.2 v test circuit is "open loop" and agnd=pgnd=0v unless otherwise specified. ? 1) without auto discharge version only ? 2) with auto discharge version only
rp504x 8 ? rp504xxxxb, rp504xxxxc (ta=25 c) symbol item conditions min. typ. max. unit v out 1.0 2.3 5.5 v in operating input voltage v out <1.0 2.3 4.5 v v out R 0.985 1.015 v out output voltage v in =v ce =3.6v or v set +1v v out < 1.2v -0.018 +0.018 v v out / t output voltage temperature coefficient -40 c < = < = c 40 ppm/ c f osc oscillator frequency v in =v ce =3.6v or v set +1v 1.95 2.25 2.55 mhz i dd1 supply current 1 v in =v ce =5.5v, v out =v set 0.8 400 800 a rp504xxxxb 40 60 i dd2 supply current 2 v in =v ce = v out =5.5v rp504xxxxc 500 840 a i standby standby current v in =5.5v,v ce =0v 0 5 a i ceh ce "h" input voltage v in =v ce =5.5v -1 0 1 a i cel ce "l" input voltage v in =5.5v,v ce =0v -1 0 1 a i vouth v out "h" input current v in =v out =5.5v,v ce =0v -1 0 1 a i voutl v out "l" input current v in =5.5v,v ce =v out =0v -1 0 1 a i lxleakh l x leakage current "h" v in =v lx =5.5v,v ce =0v -1 0 5 a i lxleakl l x leakage current "l" v in =5.5v,v ce =v lx =0v -5 0 1 a v ceh ce "h" input voltage v in =5.5v 1.0 v v cel ce "l" input voltage v in =2.3v 0.4 v r onp on resistance of pch tr. v in =3.6v, i lx = ? 100ma 0.34 ? r onn on resistance of nch tr. v in =3.6v, i lx = ? 100ma 0.43 ? maxduty oscillator maximum duty cycle 100 % t start soft-start time v in =v ce =3.6v or v set +1v 150 310 s i lx lim l x current limit v in =v ce =3.6v or v set +1v 700 900 ma t prot protection delay time v in =v ce =3.6v or v set +1v 0.5 1.5 5 ms v uvlo1 uvlo detector threshold v in =v ce 1.9 2.0 2.1 v v uvlo2 uvlo released voltage v in =v ce 2.0 2.1 2.2 v test circuit is "open loop" and agnd=pgnd=0v unless otherwise specified.
rp504x 9 typical application ? rp504n:sot-23-5 (mode pin is not included.) c ou t 4. 7 f ce v in l x v out v in c in 2.2 f l 2.2 ? rp504l:dfn1616-6b / rp504k:dfn(plp)1216-6f (mode pin is included.) c ou t 4. 7 f ce mode ? f l 2.2 ? ) mode=?h? forced pwm mode=?l? pwm/vfm automatic shift symbol recommendation components 2.2 f c1608jb0j225k (tdk) 2.2 f 2 c1005jb0j225k (tdk) jmk105bj225mv (taiyo yuden) c in 4.7 f ceramic c1005x5r0j475m (tdk) jmk105bj475mv (taiyo yuden) c out 4.7 f ceramic c1608jb0j475k (tdk) grm188b30j475ke18 (murata) l 2.2 h inductor mipsz2520d2r2 (fdk) mips2520d2r2 (fdk) mlp2520s2r2m (tdk) vls252010t-2r2m (tdk) ckp2520 2r2m (taiyo yuden)
rp504x 10 technical notes when you use these ics, consider the following issues: ? set external components such as an inductor, c in , c out as close as possible to the ic, in particular, minimize the wiring to v in pin and pgnd pin. reinforce the v in , pgnd, and v out lines sufficiently . large switching current may flow in these lines. if the impedance of v in and pgnd lines is too large, the internal voltage level in this ic may shift caused by the switching curren t, and the operation might be unstable. the wiring between v out and load and between l and v out should be separated. ? the recommended capacitance value for t he cin capacitor connected between the v in and pgnd pins is 2.2f or more. also, the recommended capacitance value for the c out capacitor is 4.7f ~ 10f.please be aware of the characteristics of bias dependence and temperature fluctuation of ceramic capacitor. ? choose an inductor with inductance range from 2.2 h to 4.7 h. the phase compensation has been made by these values with output capacitors. the recommendation characteristics of the indu ctor are low dc resistance, large enough permissible current, and strong against t he magnetic saturation. inductance value may shift depending on an inductor. if the inductance value at an actual load current is low, l x peak current may increase and may overlap the l x current limit. as a result, ov er current protection may work. ? over current protection circuit, latch -type protection circuit may be affect ed by self-heating and heat radiation environment. ? the performance of power supply circuits using this ic largely depends on the peripheral circuits. please be very careful when setting the peripheral parts. when designing the peripheral circuits of each part, pcb patterns, and this ic, please do not exceed the rated values (voltage, current, power).
rp504x 11 operation of step-down dc/dc converter and output current the dc/dc converter charges e nergy in the inductor when l x transistor is on, and discharges the energy from the inductor when l x transistor is off and controls with less energy loss, so that a lower output voltage than the input voltage is obtained. the operation will be explained with reference to the following diagrams: pch tr l nch tr v in i1 v out cl i2 gnd t=1/fosc ton toff topen ilmin ilmax il i1 i2 ? step 1 : pch tr. turns on and current il (=i1) flows, and en ergy is charged into cl. at this moment, il increases from il min (=0) to reach il max in proportion to the on-time period (t on ) of pch tr. ? step 2 : when pch tr. turns off, sync hronous rectifier nch tr. turns on in order that l maintains il at il max , and current il (=i2) flows. ? step 3: il (=i2) decreases gradually and reaches il=il min =0 after a time period of t open , and nch tr. turns off. provided that in the continuous mode, next cycle starts befor e il becomes to 0 because t off time is not enough. in this case, il value increases from this il min (>0). in the case of pwm control system , the output voltage is maintained by controlling the on-time period (t on ), with the oscillator frequency (f osc ) being maintained constant. the maximum value (il max ) and the minimum value (il min ) of the current flowing through the inductor are the same as those when pch tr. turns on and off. the difference between il max and il min , which is represented by i: ? i = il max ? il min = v out t open / l = (v in ? v out ) t on / l ......................................... e quation 1 wherein, t = 1 / f osc = t on + t off duty (%)= t on / t 100 = t on f osc 100 t open t off in equation 1, v out t open / l and (v in ? v out ) t on / l respectively show the change of the current at "on", and the change of the current at "off".
rp504x 12 discontinuous mode and continuous mode when the output current (i out ) is relatively small, t open < t off as illustrated in the above diagram. in this case, the energy is charged in the inductor during the time period of t on and is discharged in its entirely during the time period of t off , therefore il min becomes to zero (il min =0). when i out is gradually increased, eventually, t open becomes to t off (t open =t off ), and when i out is further increased, il min becomes larger than zero (il min >0). the former mode is referred to as the discontinuous mode and the latter mode is referred to as continuous mode. discontinuous mode continuous mode ilmax ilmin ton toff t=1/fosc topen il t ilmax ilmin ton toff t=1/fosc il iconst t in the continuous mode, when equation 1 is solved for t on and assumed that the solution is t onc , t onc = t v out / v in .......................................................................................................equat ion 2 when t on rp504x 13 output current and selection of external components the relation between the output current and external components is as follows: (wherein, ripple current p-p value is described as i rp , on resistance of pch tr. and nch tr. of l x are respectively described as r onp and r onn , and the dc resistor of the inductor is described as r l .) when pch tr. of l x is on: v in = v out + (r onp + r l ) i out + l i rp / t on ................................................................. equat ion 3 when pch tr. of l x is "off" (nch tr. is "on"): l i rp / t off = r onn i out + v out + r l i out ................................................................. equat ion 4 put equation 4 to equation 3 and solve for on duty of pch transistor, d on = t on / (t off + t on ), d on = (v out + r onn i out + r l i out ) / (v in + r onn i out ? r onp i out )....................... equation 5 ripple current is as follows: i rp = (v in ? v out ? r onp i out ? r l i out ) d on / f osc / l............................................. e quation 6 wherein, peak current that flows through l, and l x tr. is as follows: il x max = i out + i rp / 2 .................................................................................................... equation 7 ? consider il x max , condition of input and output and select external components. ? the above explanation is directed to the calculat ion in an ideal case in continuous mode.
rp504x 14 timing chart (1) soft start time ? in the case of starting this ic with ce in the case of starting this ic with ce, the operation can be as in the timing chart below. when the voltage of ce pin (v ce ) is beyond the threshold level, the oper ation of the ic starts. the threshold voltage of ce pin is in between ce "h" input voltage (v ceh ) and ce "l" input voltage (v cel ) described in the electrical characteristics table. soft-start circuit op erates, and after the certain time, the reference voltage inside the ic (v ref ) is rising gradually up to the constant value. v ceh soft-start time ic internal voltage reference v cel threshold level lx voltage (v ce ) (v ref ) soft-start circuit operating ( v lx ) depending on power supply, load current, external components (v out ) output voltage ce pin input voltage pwm mode operating during the soft-start time soft-start time is the time interval from soft start ci rcuit starting point to the reference voltage level reaching point up to this constant level. ? soft start time is not always equal to the turn-on speed of dc/dc converter. the power supply capacity for this ic, load current, inductance and capacitance values affect the turn-on speed. ? in the case of starting with power supply in the case of starting with power supply, when the input voltage (v in ) is larger than uvlo released voltage (v uvlo2 ), soft start circuit operates, and after that, t he same explanation above is applied to the operation. soft-start time is the time interval from soft start ci rcuit starting point to the reference voltage level reaching point up to this constant level. output voltage input voltage v uvlo2 ic internal voltage reference v uvlo1 lx voltage set v out set v out soft-start time depending on power supply, load current, external components pwm mode operating during the soft-start time (v out ) (v in ) (v ref ) (v lx ) ? turn-on speed is affected by next conditions; (a) input voltage (v in ) rising speed depending on the power supplier to the ic and input capacitor c in . (b) output capacitor c out value and load current value.
rp504x 15 (2) under voltage lockout (uvlo) circuit the step-down dc/dc converter stops and on duty becomes 100%, if input voltage (v in ) becomes less than the set output voltage (set v out ), the output voltage (v out ) gradually drops according to the input voltage (v in ). if the input voltage drops more and becomes less than uvlo detector threshold (v uvlo1 ), the under voltage lockout circuit (uvlo) operat es, the ic internal reference voltage (v ref ) stops, switching transistors turn off and the output voltage drops according to the load and output capacitor c out value. to restart the normal operation, the input voltage (v in ) must be more than the uvlo released voltage (v uvlo2 ). the timing chart below describes the operation with varying the input voltage (v in ). v uvlo2 v uvlo1 set v out set v out output voltage input voltage ic internal voltage reference lx voltage soft-start time depending on power supply, load current, external components (v out ) (v in ) (v ref ) (v lx ) ? actually, the waveform of v out at uvlo working and releasing varies depending on the initial voltage of c out and load current situation.
rp504x 16 (3) over current protection circuit, latch type protection circuit over current protection circuit supervises the i nductor peak current (the current flowing through pch transistor) in each switching cycle, and if the current exceeds the l x current limit (i lx lim ), turns off pch transistor. the l x current limit of rp504x is typ.900ma. latch type protection circuit latches the built-in driv er to the off state and st ops the operation of dc/dc converter if the over current status continues or t he output voltage continues being the half of the setting voltage for equal or longer than protection delay time (t prot ). ? l x current limit (i lx lim ) and protection delay time (t prot ) could be easily affected by self-heating or ambient environment. if the input voltage (v in ) drops drastically or becomes unstable due to short-circuit, the protection operation and protection delay time may be affected. protection delay time (t prot ) lx current limit (i lx lim ) lx current pch tr. current lx voltage (v lx ) to release the condition of latch type protection, restart this ic by inputting "l" signal to ce pin, or restart this ic with power-on or make the supply voltage lower than uvlo detector threshold (v uvlo1 ) level. the timing chart shown below describes the changing pr ocess of input voltage rising, stable operating, operating with large current, reset with ce pin, st able operating, input voltage falling, input voltage recovering, and stable operating. point(1) : if the large current flows through the circ uit or the ic goes into low output voltage condition due to short-circuit or other reasons, the latch type protection circuit latches the built-in driver to off state after the protection delay time (t prot ). then, v lx becomes "l" and the output voltage turns off. in this timing chart below, the latch protective circuit can be released by once putting the ic into "l" with the ce pin and then into "h" again. point(2) : the latch type protection can be released by uvlo reset by making the input voltage lower than the uvlo detector threshold(v uvlo1 ). input voltage (v in ) set v out uvl o detect voltage (v uvlo1 ) ce pin input voltage (v ce ) set v out threshold level lx voltage (v lx ) set v out output voltage (v out ) uvl o release voltage (v uvlo 2 ) (1) (2) sof t-s tart tim e set v out sof t-s tart tim e soft-start time stable operation protection delay time protection delay time uv lo r eset ce res et latch-type protection latch-type protecti on stable operation stable operation
rp504x 17 typical characteristics 1) output voltage vs. output current rp504x v out =0.8v rp504x v out =0.8v mode=?l?pwm/vfm automatic shift mode=?h? forced pwm 0.780 0.785 0.790 0.795 0.800 0.805 0.810 0.815 0.820 0.01 0.1 1 10 100 output current i out (m a) output voltage v out (v) vin=3.6v vin=4.5v 0.780 0.785 0.790 0.795 0.800 0.805 0.810 0.815 0.820 0 100 200 300 400 500 600 output current i out (m a) output voltage v out (v) vin =3 .6 v vin =4 .5 v rp504x v out =1.2v rp504x v out =1.2v mode=?l?pwm/vfm automatic shift mode=?h? forced pwm 1.180 1.185 1.190 1.195 1.200 1.205 1.210 1.215 1.220 0.01 0.1 1 10 100 output current i out (m a) output voltage v out (v) vin=3.6v vin=5.0v 1.180 1.185 1.190 1.195 1.200 1.205 1.210 1.215 1.220 0 100 200 300 400 500 600 output current i out (m a) output voltage v out (v) vin=3.6v vin=5.0v rp504x v out =1.8v rp504x v out =1.8v mode=?l?pwm/vfm automatic shift mode=?h? forced pwm 1.780 1.790 1.800 1.810 1.820 1.830 0.01 0.1 1 10 100 output current i out (m a) output voltage v out (v) vin=3.6v vin=5.0v 1.780 1.790 1.800 1.810 1.820 1.830 0 100 200 300 400 500 600 output current i out (m a) output voltage v out (v) vin =3 .6 v vin =5 .0 v
rp504x 18 rp504x v out =3.3v rp504x v out =3.3v mode=?l?pwm/vfm automatic shift mode=?h? forced pwm 3.270 3.280 3.290 3.300 3.310 3.320 0.01 0.1 1 10 100 output current i out (m a) output voltage v out (v) vin=4.3v vin=5.0v 3.270 3.280 3.290 3.300 3.310 3.320 0 100 200 300 400 500 600 output current i out (m a) output voltage v out (v) vin =4 .3 v vin =5 .0 v 2) output voltage vs. input voltage rp504x v out =0.8v rp504x v out =1.2v mode=?h? forced pwm mode=?h? forced pwm 0.780 0.785 0.790 0.795 0.800 0.805 0.810 0.815 0.820 22.533.544.5 input voltage v in (v) output voltage v out (v) iout=1m a iout=50ma iout=250ma 1.180 1.185 1.190 1.195 1.200 1.205 1.210 1.215 1.220 2 2.5 3 3.5 4 4.5 5 5.5 input voltage v in (v) output voltage v out (v) iout=1m a iout=50ma iout=250ma rp504x v out =1.8v rp504x v out =3.3v mode=?h? forced pwm mode=?h? forced pwm 1.77 1.78 1.79 1.8 1.81 1.82 1.83 22.533.544.555.5 input voltage v in (v) output voltage v out (v) iout=1m a iout=50m a iout=250m a 3.25 3.26 3.27 3.28 3.29 3.3 3.31 3.32 3.33 3.34 3.35 3.544.555.5 input voltage v in (v) output voltage v out (v) iout=1m a iout=50ma iout=250ma
rp504x 19 3) output voltage vs. temperature 1.770 1.780 1.790 1.800 1.810 1.820 1.830 -50 -25 0 25 50 75 100 temperature ta(c) output voltage v out (v) vin=3.6v 4) efficiency vs. output current rp504x v out =0.8v rp504x v out =1.2v 0 10 20 30 40 50 60 70 80 90 100 0.01 0.1 1 10 100 1000 output current i out (ma) efficiency (%) v in =4.5v, v mode =0v v in =3.6v, v mode =0v v in =v mode =3.6v v in =v mode =4.5v 0 10 20 30 40 50 60 70 80 90 100 0.01 0.1 1 10 100 1000 output current i out (ma) efficiency (%) v in =5.0v, v mode =0v v in =3.6v, v mode =0v v in =v mode =3.6v v in =v mode =5.0v rp504x v out =1.8v rp504x v out =3.3v 0 10 20 30 40 50 60 70 80 90 100 0.01 0.1 1 10 100 1000 output current i out (ma) efficiency (%) v in =5.0v, v mode =0v v in =3.6v, v mode =0v v in =v mode =3.6v v in =v mode =5.0v 0 10 20 30 40 50 60 70 80 90 100 0.01 0.1 1 10 100 1000 output current i out (ma) efficiency (%) v in =5.0v, v mode =0v v in =4.3v, v mode =0v v in =v mode =3.6v v in =v mode =4.3v
rp504x 20 5) supply current vs. temperature 6) supply current vs. input voltage rp504x v out =1.8v(v in =5.5v) rp504x v out =1.8v mode=?l?pwm/vfm automatic shift mode=?l?pwm/vfm automatic shift 10 15 20 25 30 35 40 -50-25 0 25 50 75100 temperature ta(c) supply current (a) closed loop open loop 10 15 20 25 30 35 40 22.533.544.555.5 input voltage v in (v) supply current (a) closed loop open loop 7) output ripple voltage vripple rp504x v out =0.8v(v in =3.6v) rp504x v out =0.8v(v in =3.6v) mode=?l?pwm/vfm automatic shift mode=?h? forced pwm -0.01 0.00 0.01 0.02 0.03 0.04 0 5 10 15 20 time t (s) output ripple voltage (ac) vripple (v) -100 0 100 200 300 inductor current il (ma) output voltage il i out =10ma -0.01 0.00 0.01 0.02 0.03 0.04 012345678910 time t (s) output ripple voltage (ac) vripple (v) -100 -50 0 50 100 inductor current il (ma) output voltage il i out =10ma rp504x v out =1.2v(v in =3.6v) rp504x v out =1.2v(v in =3.6v) mode=?l?pwm/vfm automatic shift mode=?h? forced pwm -0.01 0.00 0.01 0.02 0.03 0.04 0 5 10 15 20 time t (s) output ripple voltage (ac) vripple (v) -100 0 100 200 300 inductor current il (ma) output voltage il i out =10ma -0.01 0.00 0.01 0.02 0.03 0.04 012345678910 time t (s) output ripple voltage (ac) vripple (v) -100 -50 0 50 100 inductor current il (ma) output voltage il i out =10ma
rp504x 21 rp504x v out =1.8v(v in =3.6v) rp504x v out =1.8v(v in =3.6v) mode=?l?pwm/vfm automatic shift mode=?h? forced pwm -0.01 0.00 0.01 0.02 0.03 0.04 0 5 10 15 20 time t (s) output ripple voltage (ac) vripple (v) -100 0 100 200 300 inductor current il (ma) output voltage il i out =10ma -0.01 0.00 0.01 0.02 0.03 0.04 012345678910 time t (s) output ripple voltage (ac) vripple (v) -100 -50 0 50 100 inductor current il (ma) output voltage il i out =10ma rp504x v out =3.3v(v in =5.0v) rp504x v out =3.3v(v in =5.0v) mode=?l?pwm/vfm automatic shift mode=?h? forced pwm -0.01 0.00 0.01 0.02 0.03 0.04 0 5 10 15 20 time t (s) output ripple voltage (ac) vripple (v) -100 0 100 200 300 inductor current il (ma) output voltage il i out =10ma -0.01 0.00 0.01 0.02 0.03 0.04 012345678910 time t (s) output ripple voltage (ac) vripple (v) -100 -50 0 50 100 150 200 inductor current il (ma) output voltage il i out =10ma 8) frequency vs. temperature 9) frequency vs. input voltage 2 2.1 2.2 2.3 2.4 2.5 -50 -25 0 25 50 75 100 temperature ta (c) frequency fosc (mhz) vin=3.6v 2 2.1 2.2 2.3 2.4 2.5 22.533.544.555.5 input voltage v in (v) frequency fosc (mhz) -40c 25c 85c
rp504x 22 10) soft start time vs. temperature 170 180 190 200 210 220 -50-25 0 255075100 temperature ta(c) soft start time tstart (s) 11) uvlo detector threshold / released voltage vs. temperature uvlo detector threshold voltage uvlo released voltage 1.9 2.0 2.1 2.2 2.3 -50-25 0 255075100 temperature ta(c) uvlo voltage v uvlo1 (v) 1.9 2.0 2.1 2.2 2.3 -50-250255075100 temperature ta(c) uvlo voltage v uvlo2 (v) 12) ce input voltage vs. temperature ce?h? input voltage(v in =5.5v) ce?h? input voltage (v in =2.3v) 0.4 0.5 0.6 0.7 0.8 0.9 1 -50 -25 0 25 50 75 100 temperature ta(c) ce input voltage v ce (v) 0.4 0.5 0.6 0.7 0.8 0.9 1 -50 -25 0 25 50 75 100 temperature ta(c) ce input voltage v ce (v)
rp504x 23 13) l x current limit vs. temperature 800 850 900 950 1000 -50-250255075100 temperature ta(c) l x current limit llim (ma) 14) nch tr. on resistance vs. temperature 15) pch tr. on resistance vs. temperature 0 0.10 0.20 0.30 0.40 0.50 0.60 -50-250255075100 temperature ta(c) nch tr.onresistance r on ( ? ) 0 0.10 0.20 0.30 0.40 0.50 0.60 -50 -25 0 25 50 75 100 temperature ta(c) pch tr.onresistance r on ( ? ) 16) load transient response rp504x081x (v in =3.6v) rp504x081x (v in =3.6v) mode=?l?pwm/vfm automatic shift mode=?l?pwm/vfm automatic shift 0.60 0.70 0.80 0.90 1.00 -10 0 10 20 30 40 50 60 70 80 90 time t (s) output voltage v out (v) 0 200 400 output current i out (ma) output voltage output current 1ma-->300ma 0.60 0.70 0.80 0.90 1.00 -100 0 100 200 300 400 500 600 700 800 900 time t (s) output voltage v out (v) 0 200 400 output current i out (ma) output current 300ma-->1ma output voltage
rp504x 24 rp504x081x (v in =3.6v) rp504x081x (v in =3.6v) mode=?h? forced pwm mode=?h? forced pwm 0.60 0.70 0.80 0.90 1.00 -10 0 10 20 30 40 50 60 70 80 90 time t (s) output voltage v out (v) 0 200 400 output current i out (ma) output voltage output current 1ma-->300m a 0.60 0.70 0.80 0.90 1.00 -10 0 10 20 30 40 50 60 70 80 90 time t (s) output voltage v out (v) 0 200 400 output current i out (ma) output current 300ma-->1ma output voltage rp504x081x (v in =3.6v) rp504x081x (v in =3.6v) 0.60 0.70 0.80 0.90 1.00 -10 0 10 20 30 40 50 60 70 80 90 time t (s) output voltage v out (v) 0 200 400 600 output current i out (ma) output voltage output current 200ma-->500ma 0.60 0.70 0.80 0.90 1.00 -10 0 10 20 30 40 50 60 70 80 90 time t (s) output voltage v out (v) 0 200 400 600 output current i out (ma) output current 500ma-->200m a output voltage rp504x121x (v in =3.6v) rp504x121x (v in =3.6v) mode=?l?pwm/vfm automatic shift mode=?l?pwm/vfm automatic shift 1.10 1.15 1.20 1.25 1.30 -10 0 10 20 30 40 50 60 70 80 90 time t (s) output voltage v out (v) 0 200 400 output current i out (ma) output voltage output current 1ma-->300ma 1.10 1.15 1.20 1.25 1.30 -100 0 100 200 300 400 500 600 700 800 900 time t (s) output voltage v out (v) 0 200 400 output current i out (ma) output voltage output current 300ma-->1ma
rp504x 25 rp504x121x (v in =3.6v) rp504x121x (v in =3.6v) mode=?h? forced pwm mode=?h? forced pwm 1.10 1.15 1.20 1.25 1.30 -10 0 10 20 30 40 50 60 70 80 90 time t (s) output voltage v out (v) 0 200 400 output current i out (ma) output current 1ma-->300ma output voltage 1.10 1.15 1.20 1.25 1.30 -10 0 10 20 30 40 50 60 70 80 90 time t (s) output voltage v out (v) 0 200 400 output current i out (ma) output current 300ma-->1ma output voltage rp504x121x (v in =3.6v) rp504x121x (v in =3.6v) 1.10 1.15 1.20 1.25 1.30 -10 0 10 20 30 40 50 60 70 80 90 time t (s) output voltage v out (v) 0 200 400 600 output current i out (ma) output current 200ma-->500ma output voltage 1.10 1.15 1.20 1.25 1.30 -10 0 10 20 30 40 50 60 70 80 90 time t (s) output voltage v out (v) 0 200 400 600 output current i out (ma) output current 500ma-->200ma output voltage rp504x181x (v in =3.6v) rp504x181x (v in =3.6v) mode=?l?pwm/vfm automatic shift mode=?l?pwm/vfm automatic shift 1.70 1.75 1.80 1.85 1.90 -10 0 10 20 30 40 50 60 70 80 90 time t (s) output voltage v out (v) 0 200 400 output current i out (ma) output voltage output current 1ma-->300ma 1.70 1.75 1.80 1.85 1.90 -100 0 100 200 300 400 500 600 700 800 900 time t (s) output voltage v out (v) 0 200 400 output current i out (ma) output voltage output current 300ma-->1ma
rp504x 26 rp504x181x (v in =3.6v) rp504x181x (v in =3.6v) mode=?h? forced pwm mode=?h? forced pwm 1.65 1.70 1.75 1.80 1.85 1.90 -10 0 10 20 30 40 50 60 70 80 90 time t (s) output voltage v out (v) 0 200 400 output current i out (ma) output current 1ma-->300ma output voltage 1.65 1.70 1.75 1.80 1.85 1.90 -10 0 10 20 30 40 50 60 70 80 90 time t (s) output voltage v out (v) 0 200 400 output current i out (ma) output current 300ma-->1ma output voltage rp504x181x (v in =3.6v) rp504x181x (v in =3.6v) 1.65 1.70 1.75 1.80 1.85 1.90 -10 0 10 20 30 40 50 60 70 80 90 time t (s) output voltage v out (v) 0 200 400 600 output current i out (ma) output current 200ma-->500ma output voltage 1.65 1.70 1.75 1.80 1.85 1.90 -10 0 10 20 30 40 50 60 70 80 90 time t (s) output voltage v out (v) 0 200 400 600 output current i out (ma) output current 500ma-->200ma output voltage rp504x331x (v in =5.0v) rp504x331x (v in =5.0v) mode=?l?pwm/vfm automatic shift mode=?l?pwm/vfm automatic shift 3.10 3.20 3.30 3.40 3.50 -10 0 10 20 30 40 50 60 70 80 90 time t (s) output voltage v out (v) 0 200 400 output current i out (ma) output voltage output current 1ma-->300ma 3.10 3.20 3.30 3.40 3.50 -100 0 100 200 300 400 500 600 700 800 900 time t (s) output voltage v out (v) 0 200 400 out p ut current i out ( ma ) output voltage output current 300ma-->1ma
rp504x 27 rp504x331x (v in =5.0v) rp504x331x (v in =5.0v) mode=?h? forced pwm mode=?h? forced pwm 3.10 3.20 3.30 3.40 3.50 -10 0 10 20 30 40 50 60 70 80 90 time t (s) output voltage v out (v) 0 200 400 output current i out (ma) output current 1ma-->300m a output voltage 3.10 3.20 3.30 3.40 3.50 -10 0 10 20 30 40 50 60 70 80 90 time t (s) output voltage v out (v) 0 200 400 output current i out (ma) output current 300ma-->1ma output voltage rp504x331x (v in =5.0v) rp504x331x (v in =5.0v) 3.10 3.20 3.30 3.40 3.50 -10 0 10 20 30 40 50 60 70 80 90 time t (s) output voltage v out (v) 0 200 400 600 output current i out (ma) output voltage output current 200ma-->500ma 3.10 3.20 3.30 3.40 3.50 -10 0 10 20 30 40 50 60 70 80 90 time t (s) output voltage v out (v) 0 200 400 600 output current i out (ma) output voltage output current 500ma-->200ma 17) mode switching waveform rp504x (v in =1.2v, i out =1ma) rp504x (v in =1.2v, i out =1ma) mode=?l? --> mode=?h? mode=?h" --> mode=?l? 1.15 1.20 1.25 1.30 -100 0 100 200 300 400 time t (s) output voltage v out (v) 0 5 mode input voltage v mode (v) output voltage mode input voltage 1.15 1.20 1.25 1.30 -200 0 200 400 600 800 time t (s) output voltage v out (v) 0 5 mode input voltage v mode (v) mode input voltage output voltage
rp504x 28 rp504x (v in =1.8v, i out =1ma) rp504x (v in =1.8v, i out =1ma) mode="l" --> mode="h" mode="h" --> mode="l" 1.75 1.80 1.85 1.90 -100 0 100 200 300 400 time t (s) output voltage v out (v) 0 5 mode input voltage v mode (v) mode input voltage output voltage 1.75 1.80 1.85 1.90 -200 0 200 400 600 800 time t (s) output voltage v out (v) 0 5 mode input voltage v mode (v) mode input voltage output voltage
3*$0)$0.1"/: -5% &mfduspojd%fwjdft$pnqboz ?4ijo:plpibnbp$?df *oufsobujpobm4bmft
 4ijo:plpibnb ,piplvlv :plpibnb$juz ,bobhbxb +bqbo 1ipof 'by  3*$0)&6301& /&5)&3-"/%4
#7 ?4fnjdpoevdups4vqqpsu$fousf 1spg8),fftpnmbbo %-"ntufmwffo 5if/fuifsmboet 10#py "$"ntufmwffo 1ipof 'by  3*$0)&-&$530/*$%&7*$&4,03&"$p -ue qpps )bftvohcvjmejoh  %bfdijepoh (bohobnhv 4fpvm ,psfb 1ipof 'by  3*$0)&-&$530/*$%&7*$&44)"/()"*$p -ue 3ppn /p#vjmejoh #j#p3pbe 1v%poh/fxejtusjdu 4ibohibj  1fpqmft3fqvcmjdpg$ijob 1ipof 'by  3*$0)$0.1"/: -5% &mfduspojd%fwjdft$pnqboz ?5bjqfjp$?df 3ppn ' /p )fohzboh3e 5bjqfj$juz 5bjxbo 30$
1ipof 'by  iuuqxxxsjdpidpn-4* 5ifqspevdutboeuifqspevdutqfdjpdbujpoteftdsjcfejouijtepdvnfoubsftvckfduupdibohfps ejtdpoujovbujpopgqspevdujpoxjuipvuopujdfgpssfbtpot tvdibtjnqspwfnfou5ifsfgpsf cfgpsf efdjejohupvtfuifqspevdut qmfbtfsfgfsup3jdpitbmftsfqsf tfoubujwftgpsuifmbuftu jogpsnbujpouifsfpo 5ifnbufsjbmtjouijtepdvnfounbzopucfdpqjfepspuifsxjtfsfqspevdfejoxipmfpsjoqbsu xjuipvuqsjpsxsjuufodpotfoupg3jdpi 1mfbtfcftvsfupublfbozofdfttbszgpsnbmjujftvoefssfmfwboumbxtpssfhvmbujpotcfgpsf fyqpsujohpspuifsxjtfubljohpvupgzpvsdpvouszuifqspevdut psuifufdiojdbmjogpsnbujpo eftdsjcfeifsfjo 5ifufdiojdbmjogpsnbujpoeftdsjcfejouijtepdvnfoutipxtuzqjdbmdibsbdufsjtujdtpgboe fybnqmfbqqmjdbujpodjsdvjutgpsuifqspevdut5ifsfmfbtfpgt vdijogpsnbujpojtopuupcf dpotusvfebtbxbssbouzpgpsbhsboupgmjdfotfvoefs3jdpit psbozuijseqbsuztjoufmmfduvbm qspqfsuzsjhiutpsbozpuifssjhiut  5ifqspevdutmjtufejouijtepdvnfoubsfjoufoefeboeeftjhofe gpsvtfbthfofsbmfmfduspojd dpnqpofoutjotuboebsebqqmjdbujpot p$?dffrvjqnfou ufmfdpnnvo jdbujpofrvjqnfou  nfbtvsjohjotusvnfout dpotvnfsfmfduspojdqspevdut bnvtfnfou frvjqnfoufud
5iptf dvtupnfstjoufoejohupvtf bqspevdujobobqqmjdbujposfrvjsjohfyusfnfrvbmjuzboesfmjb cjmjuz  gpsfybnqmf jobijhimztqfdjpdbqqmjdbujpoxifsfuifgbjmvsf psnjtpqfsbujpopguifqspevdu dpvmesftvmujoivnbojokvszpsefbui bjsdsbgu tqbdfwfijdmf ovdmfbssfbdupsdpouspmtztufn  usb$?ddpouspmtztufn bvupnpujwfboe usbotqpsubujpofrvjqnfou dpncvtujpofrvjqnfou tbgfuz efwjdft mjgftvqqpsutztufnfud
tipvmepstudpoubduvt 8fbsfnbljohpvsdpoujovpvtf$?psuupjnqspwfuifrvbmjuzboesfmjbcjmjuzpgpvsqspevdut cvu tfnjdpoevdupsqspevdutbsfmjlfmzupgbjmxjuidfsubjoqspcbcjm juz*opsefsupqsfwfoubozjokvszup qfstpotpsebnbhftupqspqfsuzsftvmujohgspntvdigbjmvsf dvt upnfsttipvmecfdbsfgvmfopvhi upjodpsqpsbuftbgfuznfbtvsftjouifjseftjho tvdibtsfevoeb odzgfbuvsf psfdpoubjonfou gfbuvsfboegbjmtbgfgfbuvsf8fepopubttvnfbozmjbcjmjuz pssftqpotjcjmjuzgpsbozmpttps ebnbhfbsjtjohgspnnjtvtfpsjobqqspqsjbufvtfpguifqspevdut  "oujsbejbujpoeftjhojtopujnqmfnfoufejouifqspevduteftdsjcfejouijtepdvnfou  1mfbtfdpoubdu3jdpitbmftsfqsftfoubujwfttipvmezpvibwfboz rvftujpotpsdpnnfout dpodfsojohuifqspevdutpsuifufdiojdbmjogpsnbujpo 3*$0)$0.1"/: -5% &mfduspojd%fwjdft$pnqboz  ricoh presented with the japan management quality award for 1999 . ricoh continually strives to promote customer satisfaction, and shares the achievements of its management quality improvement program with people and society.  ricoh awarded iso 14001 certification. the ricoh group was awarded iso 14001 certification, which is an international standard for environmental management systems, at both its domestic and overseas production facilities. our current aim is to obtain iso 14001 certification for all of our business offices. ricoh completed the organization of the lead-free production for all of our products. after apr. 1, 2006, we will ship out the lead free products only. thus, all products that will be shipped from now on comply with rohs directive.


▲Up To Search▲   

 
Price & Availability of RICOHCOMPANYLTD-RP504L221D-TR

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X