Part Number Hot Search : 
5N120 80N100 DS1921 FDS6574 C1200 MS4012F 2SD2179 JANTXV
Product Description
Full Text Search
 

To Download MP201 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  MP201 dying gasp storage and release control ic MP201 rev. 1.01 www.monolithicpower.com 1 11/27/2012 mps proprietary information. patent protec ted. unauthorized photocopy and duplication prohibited. ? 2012 mps. all rights reserved. the future of analog ic technology description the MP201 is a dying gasp storage and release controller. it charges storage capacitor from the input during normal operation. once the storage capacitor is charged to the selected voltage, the charge is stopped, and the storage capacitor is separated from the input. the charging circuit maintains the storage voltage after the charge is completed. the MP201 keeps monitoring the input voltage, and releases the charge from storage capacitor to input capacitor when the input voltage is lower than the selected release voltage. it regulates the input voltage to keep it close to release voltage for as long as possible. the MP201 has built-in current limit circuit during the charging up of the storage capacitors. the storage and release voltage can be programmed to user?s desired value by external resistors. the MP201 comes in an soic-8 package and requires a minimum number of readily available standard external components. features ? wide 4.5v to 18v input operating range ? 2.5a dumping current from storage to vin ? built-in 260ma current limit for charging storage capacitor ? user programmable storage and release voltage ? dying gasp flag indicator ? available in soic-8 package applications ? cable/dsl/pon modems ? home gateway ? access point networks all mps parts are lead-free and adhere to the rohs directive. for mps green status, please visit mps website under products, quality assurance page. ?mps? and ?the future of analog ic technology? are registered trademarks of monolithic power systems, inc. typical application MP201 gnd fb1 bst vin c1 47 gasp vin 4.5v to 18v vstrg 23v strg vmax c4 22 nf c3 2.2nf c5 1000 7 8 1 3 6 4 2 fb2 5 r3 464 k r4 c2 15 pf r1 845 k r2 37 .4k r5 10 open drain output connect to sw v storage 5v/div. v in 5v/div. gasp 10v/div. i release 1a/div.
MP201 ? dying gasp storage and release control ic MP201 rev. 1.01 www.monolithicpower.com 2 11/27/2012 mps proprietary information. patent protec ted. unauthorized photocopy and duplication prohibited. ? 2012 mps. all rights reserved. ordering information part number* package top marking MP201ds soic-8 MP201 * for tape & reel, add suffix ?z (eg.MP201ds?z); for rohs compliant packaging, add suffix ?lf (e.g. MP201ds?lf?z) package reference bst vin fb2 gnd vmax strg gasp fb1 1 2 3 4 8 7 6 5 top view soic-8 absolute maxi mum ratings (1) v in ..................................................-0.3v to 22v v bst . ................................................-0.3v to 40v v bst -v in ????????????-0.3v to 25v v max .................................................-0.3v to 42v v max -v in ??????????.......-0.3v to 25v v strg ...............................................-0.3v to 32v v strg -v in ???????????..-0.3v to 25v v gasp ...............................................-0.3v to 22v all other pins .................................-0.3v to 6.5v junction temperature ...............................150 c lead temperature ....................................260 c continuous power dissipation (t a = +25c) (2) ........................................................... 1.39w junction temperature ...............................150 c recommended operating conditions (3) supply voltage v in ...........................4.5v to 18v storage voltage v strg ........................................ ................................vin to 2v in -0.8v(32v max) operating junction temp. (t j ). -40c to +125c thermal resistance (4) ja jc soic-8.................................... 90 ...... 45... c/w notes: 1) exceeding these ratings may damage the device. 2) the maximum allowable power dissipation is a function of the maximum junction temperature t j (max), the junction-to- ambient thermal resistance ja , and the ambient temperature t a . the maximum allowable continuous power dissipation at any ambient temperature is calculated by p d (max) = (t j (max)-t a )/ ja . exceeding the maximum allowable powe r dissipation will cause excessive die temperature, and the regulator will go into thermal shutdown. internal thermal shutdown circuitry protects the device from permanent damage. 3) the device is not guaranteed to function outside of its operating conditions. 4) measured on jesd51-7, 4-layer pcb.
MP201 ? dying gasp storage and release control ic MP201 rev. 1.01 www.monolithicpower.com 3 11/27/2012 mps proprietary information. patent protec ted. unauthorized photocopy and duplication prohibited. ? 2012 mps. all rights reserved. electrical characteristics (5) v in = 12v, t a = 25 c, unless otherwise noted. parameter symbol condition min typ max units input supply voltage range v in 4.5 18 v supply current (quiescent) i in v fb = 1.1v 250 300 a vin under voltage lockout threshold rising inuv vth 2.5 3.0 3.5 v vin under voltage lockout threshold hysteresis inuv hys 250 mv storage feedback voltage v fb1 0.97 1 1.03 v release feedback voltage v fb2 0.97 1 1.03 v vstorage refresh threshold-high v fb1_h 1.025 1.05 v vstorage refresh threshold-low v fb1_l 0.95 0.975 v vstorage refresh threshold-hysteresis v fb1_hys 50 mv feedback current i fb v fb1 = v fb2 =1v 10 50 na gasp high threshold (6) vth gasp 1.05 v gasp low threshold (6) vtl gasp 1 v gasp rising delay time gasp tdr 73 s gasp falling delay time gasp tdf 0.7 s gasp sink current capability v gasp sink 4ma 0.2 0.3 v gasp leakage current i gasp_leak v gasp =3.3v 0.01 0.1 ua input inrush current limit for charging storage capacitor i precharge_limit v in =12v, charging c storage from 0 to v in 0.2 0.26 0.33 a current limit for dumping charge from cstorage to v in i dump_limit 2 2.5 3 a thermal shutdown (7) t sd 150 oc thermal shutdown hysteresis (7) t hys 30 oc notes: 5) production test at +25c. specificati ons over the temperature range are guaranteed by design and characterization. 6) this voltage is fb2 voltage. 7) guaranted by design
MP201 ? dying gasp storage and release control ic MP201 rev. 1.01 www.monolithicpower.com 4 11/27/2012 mps proprietary information. patent protec ted. unauthorized photocopy and duplication prohibited. ? 2012 mps. all rights reserved. pin functions pin # name description 1 bst bootstrap. a capacitor and a resistor in series connected between this pin and dc/dc converter?s sw node is required to charge storage capacitor. 2 vin supply voltage. the MP201 operates from a +4.5v to +18v input rail. input decoupling capacitor is needed to decouple the input rail. 3 fb2 feedback to set release voltage. 4 gnd system ground. this pin is the referenc e ground of the regulated output voltage. for this reason care must be taken in pcb layout. suggested to be connected to gnd with copper and vias. 5 fb1 feedback to set storage voltage. 6 gasp open drain output to indicate dying gasp operation is active. 7 strg connect to storage capacitor for dy ing gasp storage and release operation. 8 vmax internal supply. a 2.2nf ceramic capacitor is required for decoupling.
MP201 ? dying gasp storage and release control ic MP201 rev. 1.01 www.monolithicpower.com 5 11/27/2012 mps proprietary information. patent protec ted. unauthorized photocopy and duplication prohibited. ? 2012 mps. all rights reserved. typical characteristics v in = 12v, v storage = 23v, v release =10.2v, for dcdc converter: p out =5w, v out =3.3v, t a = +25oc, unless otherwise noted. release time vs. storage capacitance 0 50 100 150 200 250 300 0 500 1000 1500 2000 2500 thermal performance 0 2 4 6 8 10 12 0.0001 0.001 0.01 0.1 1 10 voltage between strg pin and vin pin (v) i release (a) 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 51015202530 safe operation area
MP201 ? dying gasp storage and release control ic MP201 rev. 1.01 www.monolithicpower.com 6 11/27/2012 mps proprietary information. patent protec ted. unauthorized photocopy and duplication prohibited. ? 2012 mps. all rights reserved. typical performanc e characteristics (continued) v in = 12v, v storage = 23v, v release =10.2v, for dcdc converter: p out =5w, v out =3.3v, t a = +25oc, unless otherwise noted. v storage 5v/div. v in 5v/div. gasp 10v/div. i release 500ma/div. v storage 5v/div. v in 5v/div. gasp 10v/div. i release 1a/div. v storage 5v/div. v in 5v/div. gasp 10v/div. i release 1a/div. v storage 5v/div. v in 5v/div. gasp 10v/div. i release 1a/div. v storage 5v/div. v in 5v/div. gasp 10v/div. i release 1a/div. v storage 5v/div. v in 5v/div. gasp 10v/div. i release 1a/div. v storage 5v/div. v in 5v/div. gasp 10v/div. i release 500ma/div. v storage 5v/div. v in 5v/div. gasp 10v/div. i release 500ma/div. v storage 5v/div. v in 5v/div. gasp 10v/div. i release 1a/div. v storage charge up v storage refresh v storage release
MP201 ? dying gasp storage and release control ic MP201 rev. 1.01 www.monolithicpower.com 7 11/27/2012 mps proprietary information. patent protec ted. unauthorized photocopy and duplication prohibited. ? 2012 mps. all rights reserved. block diagram logic control vmax bst vin fb2 fb1 vstorage gnd boost /charge / release circuitry gasp figure 1 ? functional block diagram
MP201 ? dying gasp storage and release control ic MP201 rev. 1.01 www.monolithicpower.com 8 11/27/2012 mps proprietary information. patent protec ted. unauthorized photocopy and duplication prohibited. ? 2012 mps. all rights reserved. operation MP201 is a dying gasp storage and release control ic. it charges the storage capacitors from input supply during power start up and keeps refreshing the storage voltage at a regulated value during normal operation. MP201 continuously monitors the input voltage. once the input voltage is lower than the programmed release voltage in the case of losing input power, it releases the charge from the storage capacitors to input, and keeps the input voltage regulated to the release voltage for as long as possible. it allows the system to respond to input power failure. start-up during the power start-up, there are two periods to charge the storage capacitors. in the first period, the MP201 pre-charges the large storage capacitors from 0 to nearly vin with built-in inrush current limit. once the storage voltage is close to the input voltage, the storage voltage is boosted and regulated at target voltage. the bst pin of MP201 should connect to the dcdc switch node. only after the dcdc is enabled, the MP201 will start boosting. figure 2 shows the charging build-up process of MP201. vin en of dc/dc output of dcdc storage voltage vin pre-charge w/ current limit target storage voltage figure 2 ? timing of charging release MP201 keeps monitoring the input voltage. once the input voltage is lower than selected release voltage in the case of losing input power, MP201 moves the charge from high voltage storage capacitor to low input voltage capacitor. the release voltage can be determined by choosing appropriate input resistance divider. the maximum ldo release current can be as high as 2.5a. until the storage capacitor voltage is near the input voltage, the input voltage loses its regulation and reduces further. a conceptual release process of MP201 is shown in figure 3. vrelease vstorage vin gasp t input uvlo of dc/dc converter figure 3 ? timing of releasing gasp indicator when the fb2 voltage, feedback voltage for the input power, is higher than 1.05xv fb2 , the gasp pin will be pulled high. connect a resistor across vin and gasp can drive gasp high. when the fb2 voltage is lower than 1.00xv fb2 , the gasp voltage will be internally pulled low. gasp voltage can be used as a communication indicator signal which states input power availability.
MP201 ? dying gasp storage and release control ic MP201 rev. 1.01 www.monolithicpower.com 9 11/27/2012 mps proprietary information. patent protec ted. unauthorized photocopy and duplication prohibited. ? 2012 mps. all rights reserved. application information set storage voltage the storage voltage can be set by choosing appropriate external feedback resistors r1 and r2 which is shown in figure 4. r1 r2 cstorage strg fb1 figure 4 ? feedback circuit for storage voltage the storage voltage is determined by: storage fb1 r1 v(1)v r2 =+ here is the example, if the storage voltage is set to be 20v, choose r2 to be 40k ? , r1 will be then given by: fb2 fb2 40k (20 v ) r1 760k v ? ? == table 1 lists the recommended resistors for different storage voltages. table 1 ? resistor selection for different storage voltages v storage (v) r1 (k ? ) r2 (k ? ) 15 750 53.2 19 750 41.6 23 845 37.4 select release voltage and input capacitors the release voltage can be set by choosing external feedback resistors r3 and r4 which is shown in figure 5. r3 r4 vin fb2 cin cf figure 5 ? release feedback circuit similarly, the release voltage is set by: release fb2 r3 v(1)v r4 =+ however, the selection of r3 and r4 not only determines the release voltage, but impacts the stability. generally, choosing r3 to be 300~500k ? is recommended for a stable performance with 47 f cin. table 2 lists the recommended resistors setup for different release voltages. table 2 ? resistor selection for different release voltages v release (v) r3 (k ? ) r4 (k ? ) cf (pf) c in ( f) 11 475 47.5 15 47 10.2 464 49.9 15 47 9.0 324 40.2 15 47 select storage capacitor the storage capacitor is for energy storage during normal operation and the energy will be released to vin in case of losing input power. typically, a general purpose electrolytic capacitor is recommended. the voltage rating of storage capacitor needs to be higher than the targeted storage voltage. the voltage rating of storage capacitor can be fully utilized since the voltage on storage capacitor is very stable during normal operation. there will be less ripple current/voltage for most of the time during normal operation. the ripple current rating of storage cap can be less consideration. the needed capacitance is dependent on how long the dying gasp time based on typically
MP201 ? dying gasp storage and release control ic MP201 rev. 1.01 www.monolithicpower.com 10 11/27/2012 mps proprietary information. patent protec ted. unauthorized photocopy and duplication prohibited. ? 2012 mps. all rights reserved. application. assume the input release current is i release when input voltage is regulated at v release for the dcdc converter. the storage voltage of MP201 is v storage , and the required dying gasp time is t dasp . the necessary storage capacitance can be calculated as following equation: release dasp storage release it cs vv = ? if i release =1a, t d =20ms, v storage =20v, v release =10v, the needed storage capacitance is 2000 f. generally, the storage capacitance should be chosen a little bit large to avoid capacitance reduction at high voltage offset. in typical xdsl applications using a 12v input supply, it is recommended to set the storage voltage higher than 20v to fully utilize the high voltage energy and minimize storage capacitance requirements. generally, a 25v rated electrolytic capacitor can be used. the lifetime of electrolytic capacitors can be severely impacted by both environmental and electrical factors. one of the most critical electrical factors is the ac rms ripple current through the capacitor which leads to increased capacitor core temperatures. normally, for typical industrial uses, it is recommended to derate the capacitor voltage rating to 70%-80%. for example, a 25v rated electrolytic capacitor would be used for a 16v to 20v application. however, since the MP201 tightly regulates the storage voltage, the storage capacitor almost has no ac ripple current going through it. the resulting refresh rate of the MP201 is very low which allows customers to safely use a 90% capacitor derating (8) . for example, a 25v electrolytic capacitor, can safely handle a storage voltage of up to 22v. table 3 is some recommended storage electrolytic capacitors which can be used in typical xdsl application pcb layout guide pcb layout is very important to achieve stable operation. please follow these guidelines and take the evb board layout for references. 1) connect the bst pin as close as possible to the sw node of dcdc converter through a resistor and a small ceramic capacitor. try to avoid interconnect the feedback path. 2) ensure all feedback connections are short and direct. place the feedback resistors and compensation components as close to the chip as possible. 3) keep the connection of the storage capacitors and strg pin as short and wide as possible. table 3 ? recommended storage capacitors part # vender capacitance voltage operating temp 25me1500wx sanyo 1500 f 25v -40 to +105 c peh526hab4270m3 kemet 2700 f 25v -40 to +105 c eeufr1e152b panasonic 1500 f 25v -40 to +105 c notes: 8) ?applying voltage does not affect the life time because the se lf heating by applying voltage can be ignored?, from sanyo. design example below is a design example following the application guidelines for the specifications: table 4: design example v in 12v to 18v v s 23v v release 10.2v the detailed application schematic is shown in figure 6. the typical performance and circuit waveforms have been shown in the typical performance characteristics section. for more device applications, please refer to the related evaluation board datasheets.
MP201 ? dying gasp storage and release control ic MP201 rev. 1.01 www.monolithicpower.com 11 11/27/2012 mps proprietary information. patent protec ted. unauthorized photocopy and duplication prohibited. ? 2012 mps. all rights reserved. typical application circuits MP201 gnd fb1 bst vin c1 22 gasp vin 12v to 18v vstrg 23v strg vmax c4 22 nf c3 2.2 nf c5 1000 fb2 r3 464 k r4 49. 9k c2 15 pf r1 845 k r2 37. 4k r5 10 r5 10 k vin vout sw mps dc/dc converter figure 6 ? MP201 application circuit
MP201 ? dying gasp storage and release control ic notice: the information in this document is subject to change wi thout notice. users should warra nt and guarantee that third party intellectual property rights are not infringed upon w hen integrating mps products into any application. mps will not assume any legal responsibility for any said applications. MP201 rev. 1.01 www.monolithicpower.com 12 11/27/2012 mps proprietary information. patent protec ted. unauthorized photocopy and duplication prohibited. ? 2012 mps. all rights reserved. package information soic8 0.016(0.41) 0.050(1.27) 0 o -8 o detail "a" 0.010(0.25) 0.020(0.50) x 45 o see detail "a" 0.0075(0.19) 0.0098(0.25) 0.150(3.80) 0.157(4.00) pin 1 id 0.050(1.27) bsc 0.013(0.33) 0.020(0.51) seating plane 0.004(0.10) 0.010(0.25) 0.189(4.80) 0.197(5.00) 0.053(1.35) 0.069(1.75) top view front view 0.228(5.80) 0.244(6.20) side view 14 85 recommended land pattern 0.213(5.40) 0.063(1.60) 0.050(1.27) 0.024(0.61) note: 1) control dimension is in inches. dimension in bracket is in millimeters. 2) package length does not include mold flash, protrusions or gate burrs. 3) package width does not include interlead flash or protrusions. 4) lead coplanarity (bottom of leads after forming) shall be 0.004" inches max. 5) drawing conforms to jedec ms-012, variation aa. 6) drawing is not to scale. 0.010(0.25) bsc gauge plane


▲Up To Search▲   

 
Price & Availability of MP201

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X