Part Number Hot Search : 
IRF730 AV1416K TZ404BD CSC2331 45984 06P201 UDN5703 MAX886
Product Description
Full Text Search
 

To Download TSX631 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  this is information on a product in full production. march 2013 docid024293 rev 1 1/31 31 TSX631, tsx632, tsx634, TSX631a, tsx632a, tsx634a micropower (45 a, 200 khz) rail-to-rail 16 v cmos operational amplifiers datasheet - production data features ? low power consumption: 60 a max at 16 v ? supply voltage: 3.3 v to 16 v ? rail-to-rail input and output ? gain bandwidth product: 200 khz typ ? low offset voltage: ? 500 v max for ?a? version ? 1 mv max for standard version ? low input bias current: 1 pa typ ? automotive qualification benefits ? power savings in power-conscious applications ? easy interfacing with high impedance sensors related products ? see tsx56x or tsx92x series for higher gain bandwidth products (900 khz or 10 mhz) applications ? industrial signal conditioning ? automotive signal conditioning ? active filtering ? medical instrumentation ? high impedance sensors description the tsx63x and tsx63xa series of operational amplifiers offer low volt age operation and rail-to- rail input and output. TSX631 is the single version, tsx632 the dual version and tsx634 the quad version, with pinouts compatible with industry standards. the tsx63x and tsx63xa series offer a 200 khz gain bandwidth product while consuming 60 a maximum at 16 v. the devices are housed in the tiniest industrial packages. these features make the tsx63x and tsx63xa family ideal for sensor interfaces and industrial signal conditioning. the wide temperature range and high esd tolerance ease the use in harsh automotive applications. sot23-5 dfn8 2x2 miniso-8 qfn16 3x3 tssop14 single dual quad table 1. device summary op-amp version standard v io enhanced v io single TSX631 TSX631a dual tsx632 tsx632a quad tsx634 tsx634a www.st.com
contents tsx63x, tsx63xa 2/31 docid024293 rev 1 contents 1 package pin connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 absolute maximum ratings and operating c onditions . . . . . . . . . . . . . 4 3 electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 4 application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.1 operating voltages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.2 rail-to-rail input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.3 input offset voltage drift over temperature . . . . . . . . . . . . . . . . . . . . . . . . 18 4.4 long term input offset voltage drift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.5 high values of input differential voltage . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4.6 pcb layouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4.7 macromodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 5 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 5.1 sot23-5 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 5.2 dfn8 2x2 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 5.3 miniso-8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 5.4 qfn16 3x3 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 5.5 tssop14 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 6 ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 7 revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
docid024293 rev 1 3/31 tsx63x, tsx63xa package pin connections 1 package pin connections figure 1. pin connections for each package (top view) dfn8 2x2 (tsx632) mini-so8 (tsx632) tssop14 (tsx634) qfn16 3x3 (tsx634) single sot23-5 (TSX631) dual quad 9&& 9&& 287 ,1 ,1 287 ,1 ,1 9&& 9&& 287 ,1 ,1 287 ,1 ,1         ,1 9&& 1& ,1 ,1 9&& 1& ,1 ,1 287 287 ,1 ,1 287 287 ,1               
absolute maximum ratings and operating conditions tsx63x, tsx63xa 4/31 docid024293 rev 1 2 absolute maximum ratings and operating conditions table 2. absolute maximum ratings (amr) symbol parameter value unit v cc supply voltage (1) 1. all voltage values, except the differential volt age are with respect to network ground terminal. 18 v v id differential input voltage (2) 2. the differential voltage is the non-inverting input termi nal with respect to the in verting input terminal. see section 4.5 for precautions of using the TSX631 with high differential input voltage. v cc v in input voltage (3) 3. v cc -v in must not exceed 18 v, v in must not exceed 18 v. v cc- - 0.2 to v cc+ + 0.2 i in input current (4) 4. input current must be limited by a resistor in series with the inputs. 10 ma t stg storage temperature -65 to +150 c r thja thermal resistance junction to ambient (5)(6) sot23-5 dfn8 2x2 miniso-8 qfn16 3x3 tssop14 5. short-circuits can c ause excessive heating and destructive dissipation. 6. r th are typical values. 250 120 190 80 100 c/w r thjc thermal resistance junction to case dfn8 2x2 qfn16 3x3 33 30 t j maximum junction temperature 160 c esd hbm: human body model (7) 7. human body model: 100 pf discharged through a 1.5 k resistor between two pins of the device, done for all couples of pin combinations with other pins floating. 4kv mm: machine model (8) 8. machine model: a 200 pf cap is charged to the spec ified voltage, then discharged directly between two pins of the device with no external se ries resistor (internal resistor < 5 ), done for all couples of pin combinations with other pins floating. 200 v cdm: charged device model (9) 9. charged device model: all pins plus package ar e charged together to the specified voltage and then discharged directly to the ground. 1.3 kv latch-up immunity 200 ma table 3. operating conditions symbol parameter value unit v cc supply voltage 3.3 to 16 v v icm common mode input voltage range v cc- - 0.1 to v cc+ + 0.1 t oper operating free air temperature range -40 to +125 c
docid024293 rev 1 5/31 tsx63x, tsx63xa electrical characteristics 3 electrical characteristics table 4. electrical characteristics at v cc+ = +3.3 v with v cc- = 0 v, v icm = v cc /2, t = 25 c, and r l = 10 k connected to v cc /2 (unless otherwise specified) symbol parameter conditions min. typ. max. unit dc performance v io offset voltage tsx63xa, t = 25 c 700 v tsx63xa, -40c < t < 125 c 1500 tsx63x, t = 25 c 1.6 mv tsx63x, -40c < t < 125 c 2.4 v io offset voltage, high common mode (v icm =v cc , r l > 1 m ) t = 25 c 4 -40c < t < 125 c 5 v io / t input offset voltage drift -40c < t < 125 c (1) 18 v/c i io input offset current (v out = v cc /2) t = 25 c 1 100 (2) pa -40c < t < 125 c 200 (2) i ib input bias current (v out = v cc /2) t = 25 c 1 100 (2) -40c < t < 125 c 200 (2) r in input resistance 1 t c in input capacitance 5 pf cmr1 common mode rejection ratio cmr = 20 log ( v icm / v io ) (v icm = -0.1 v to v cc -1.65 v, v out = v cc /2, r l > 1 m s) t = 25 c 65 79 db -40c < t < 125 c 62 cmr2 common mode rejection ratio cmr = 20 log ( v icm / v io ) (v icm = -0.1 v to v cc +0.1 v, v out = v cc /2, r l > 1 m ) t = 25 c 59 74 -40c < t < 125 c 55 a vd large signal voltage gain (v out = 0.5 v to (v cc - 0.5 v), r l > 1 m ) t = 25 c 100 110 -40c < t < 125c 90 v oh high level output voltage v id = +1 v, v oh = v cc -v out r l = 10 k , t = 25 c 70 mv r l = 10 k , -40 c < t < 125 c 100 v ol low level output voltage v id = -1 v, r l = 10 k , t = 25 c 70 r l = 10 k , -40c < t < 125 c 100 i out i sink (v out = v cc ) t = 25 c 4.3 5.3 ma -40c < t < 125 c 2.5 i source (v out = 0 v) t = 25 c 3.3 4.3 -40c < t < 125 c 2.5 i cc supply current (per operator, v out = v cc /2, r l > 1 m ) t = 25 c 45 60 a -40c < t < 125 c 60
electrical characteristics tsx63x, tsx63xa 6/31 docid024293 rev 1 ac performance gbp gain bandwidth product r l = 100 k , c l = 100 pf 160 200 khz f u unity gain frequency 160 m phase margin 55 degrees g m gain margin 9 db sr slew rate r l = 100 k , c l = 100 pf, v out = 0.5 v to v cc - 0.5v 0.12 v/ s e n low-frequency peak-to-peak input noise bandwidth: f = 0.1 to 10 hz 5 v pp e n equivalent input noise voltage f = 1 khz 60 f = 10 khz thd+n total harmonic distortion + noise follower configuration, f in = 1 khz, r l = 100 k , v icm = 0.9v, bw = 22 khz, v out = 1 v pp 0.005 % 1. see chapter 4.3: input offset voltage drift over temperature on page 18 2. guaranteed by design table 4. electrical characteristics at v cc+ = +3.3 v with v cc- = 0 v, v icm = v cc /2, t = 25 c, and r l = 10 k connected to v cc /2 (unless otherwise specified) symbol parameter conditions min. typ. max. unit nv hz ----------- -
docid024293 rev 1 7/31 tsx63x, tsx63xa electrical characteristics table 5. electrical characteristics at v cc+ = +5 v with v cc- = 0 v, v icm = v cc /2, t = 25 c, and r l = 10 k connected to v cc /2 (unless otherwise specified) symbol parameter conditions min. typ. max. unit dc performance v io offset voltage tsx63xa, t = 25 c 700 v tsx63xa, -40c < t < 125 c 1500 tsx63x, t = 25 c 1.6 mv tsx63x, -40c < t < 125 c 2.4 v io offset voltage, high common mode (v icm =v cc , r l > 1 m ) t = 25 c 4 -40c < t < 125 c 5 v io / t input offset voltage drift -40c < t < 125 c (1) 18 v/c v io long term input offset voltage drift t = 25 c (2) 17 i io input offset current (v out = v cc /2) t = 25 c 1 100 (3) pa -40c < t < 125 c 200 (3) i ib input bias current (v out = v cc /2) t = 25 c 1 100 (3) -40c < t < 125 c 200 (3) r in input resistance 1 t c in input capacitance 5 pf cmr1 common mode rejection ratio cmr = 20 log ( v icm / v io ) (v icm = -0.1 v to v cc -1.65 v, v out = v cc /2, r l > 1 m ) t = 25 c 65 79 db -40c < t < 125 c 62 cmr2 common mode rejection ratio cmr = 20 log ( v icm / v io ) (v icm = -0.1 v to v cc +0.1 v, v out = v cc /2, r l > 1 m ) t = 25 c 62 77 -40c < t < 125 c 58 a vd large signal voltage gain (v out = 0.5 v to (v cc - 0.5 v), r l > 1 m ) t = 25 c 100 110 -40c < t < 125 c 90 v oh high level output voltage v id = +1 v, v oh = v cc -v out r l = 10 k , t=25 c 70 mv r l = 10 k , -40c < t < 125 c 100 v ol low level output voltage v id = -1 v, r l = 10 k , t = 25 c 70 r l = 10 k , -40c < t < 125 c 100 i out i sink (v out = v cc ) t = 25 c 11 14 ma -40c < t < 125 c 8 i source (v out = 0 v) t = 25 c 9 12 -40c < t < 125 c 7 i cc supply current (per operator, v out = v cc /2, r l > 1 m ) t = 25 c 45 60 a -40c < t < 125 c 60 nv month ---------------------------
electrical characteristics tsx63x, tsx63xa 8/31 docid024293 rev 1 ac performance gbp gain bandwidth product r l = 100 k , c l = 100 pf 160 200 khz f u unity gain frequency 160 m phase margin 55 degrees g m gain margin 9 db sr slew rate r l = 100 k , c l = 100 pf, v out = 0.5 v to v cc - 0.5v 0.12 v/ s e n low-frequency peak-to-peak input noise bandwidth: f = 0.1 to 10 hz 5 v pp e n equivalent input noise voltage f = 1 khz 60 f = 10 khz thd+n total harmonic distortion + noise follower configuration, f in = 1 khz, r l = 100 k , v icm = 2.5v, bw = 22 khz, v out = 1 v pp 0.005 % 1. see chapter 4.3: input offset voltage drift over temperature on page 18 2. typical value is based on the vio drift observed after 100 0h at 125c extrapolated to 25c using the arrhenius law and assuming an activation energy of 0.7 ev. the operational amplifier is aged in follower mode configuration. see chapter 4.4: long term input offset voltage drift on page 19 . 3. guaranteed by design table 5. electrical characteristics at v cc+ = +5 v with v cc- = 0 v, v icm = v cc /2, t = 25 c, and r l = 10 k connected to v cc /2 (unless otherwise specified) symbol parameter conditions min. typ. max. unit nv hz ----------- -
docid024293 rev 1 9/31 tsx63x, tsx63xa electrical characteristics table 6. electrical characteristics at v cc+ = +10 v with v cc- = 0 v, v icm = v cc /2, t = 25 c, and r l =10 k connected to v cc /2 (unless otherwise specified) symbol parameter conditions min. typ. max. unit dc performance v io offset voltage tsx63xa, t = 25 c 500 v tsx63xa, -40c < t < 125 c 1300 tsx63x, t = 25 c 1 mv tsx63x, -40c < t < 125 c 1.8 v io offset voltage, high common mode (v icm =v cc , r l > 1 m ) t = 25 c 4 -40c < t < 125 c 5 v io / t input offset voltage drift -40c < t < 125 c (1) 18 v/c v io long term input offset voltage drift t = 25 c (2) 180 i io input offset current (v out = v cc /2) t = 25 c 1 100 (3) pa -40c < t < 125 c 200 (3) i ib input bias current (v out = v cc /2) t = 25 c 1 100 (3) -40c < t < 125 c 200 (3) r in input resistance 1 t c in input capacitance 5 pf cmr1 common mode rejection ratio cmr = 20 log ( v icm / v io ) (v icm = -0.1 v to v cc -1.65 v, v out = v cc /2, r l > 1 m ) t = 25 c 71 84 db -40c < t < 125 c 68 cmr2 common mode rejection ratio cmr = 20 log ( v icm / v io ) (v icm = -0.1 v to v cc +0.1 v, v out = v cc /2, r l > 1 m ) t = 25 c 69 82 -40c < t < 125 c 66 a vd large signal voltage gain (v out = 0.5 v to (v cc - 0.5 v), r l > 1 m ) t = 25 c 100 110 -40c < t < 125 c 90 v oh high level output voltage v id = +1 v, v oh = v cc -v out r l = 10 k , t = 25 c 70 mv r l = 10 k , -40c < t < 125 c 100 v ol low level output voltage v id = -1 v, r l = 10 k , t = 25 c 70 r l = 10 k , -40c < t < 125 c 100 i out i sink (v out = v cc ) t = 25 c 35 51 ma -40c < t < 125 c 25 i source (v out = 0 v) t = 25 c 30 42 -40c < t < 125 c 20 i cc supply current (per operator, v out = v cc /2, r l > 1 m ) t = 25 c 45 60 a -40c < t < 125 c 60 nv month ---------------------------
electrical characteristics tsx63x, tsx63xa 10/31 docid024293 rev 1 ac performance gbp gain bandwidth product r l = 100 k , c l = 100 pf 160 200 khz f u unity gain frequency 160 m phase margin 55 degrees g m gain margin 9 db sr slew rate r l = 100 k , c l = 100 pf, v out = 0.5 v to v cc - 0.5v 0.12 v/ s e n low-frequency peak-to-peak input noise bandwidth: f = 0.1 to 10 hz 5 v pp e n equivalent input noise voltage f = 1 khz 60 f = 10 khz thd+n total harmonic distortion + noise follower configuration, f in = 1 khz, r l = 100 k , v icm = 5 v, bw = 22 khz, v out = 1 v pp 0.004 % 1. see chapter 4.3: input offset voltage drift over temperature on page 18 2. typical value is based on the vio drift observed after 100 0h at 125c extrapolated to 25c using the arrhenius law and assuming an activation energy of 0.7 ev. the operational amplifier is aged in follower mode configuration. see chapter 4.4: long term input offset voltage drift on page 19 . 3. guaranteed by design table 6. electrical characteristics at v cc+ = +10 v with v cc- = 0 v, v icm = v cc /2, t = 25 c, and r l =10 k connected to v cc /2 (unless otherwise specified) symbol parameter conditions min. typ. max. unit nv hz ----------- -
docid024293 rev 1 11/31 tsx63x, tsx63xa electrical characteristics table 7. electrical characteristics at v cc+ = +16 v with v cc- = 0 v, v icm = v cc /2, t = 25 c, and r l =10 k connected to v cc /2 (unless otherwise specified) symbol parameter conditions min. typ. max. unit dc performance v io offset voltage tsx63xa, t = 25 c 700 v tsx63xa, -40c < t < 125 c 1500 t = 25 c 1.6 mv -40c < t < 125 c 2.4 v io offset voltage, high common- mode (v icm =v cc , r l > 1 m ) t = 25c 4 -40c < t < 125 c 5 v io / t input offset voltage drift -40c < t < 125 c (1) 18 v/c v io long term input offset voltage drift t = 25 c (2) 3.4 i io input offset current (v out = v cc /2) t = 25 c 1 100 (3) pa -40c < t < 125 c 200 (3) i ib input bias current (v out = v cc /2) t = 25 c 1 100 (3) -40c < t < 125 c 200 (3) r in input resistance 1 t c in input capacitance 5 pf cmr1 common mode rejection ratio cmr = 20 log ( v icm / v io ) (v icm = -0.1 v to v cc -1.65 v, v out = v cc /2, r l > 1 m ) t = 25 c 71 85 db -40c < t < 125 c 68 cmr2 common mode rejection ratio cmr = 20 log ( v icm / v io ) (v icm = -0.1 v to v cc +0.1 v, v out = v cc /2, r l > 1 m ) t = 25 c 69 83 -40c < t < 125 c 66 svr common mode rejection ratio 20 log ( v cc / v io ) (v cc =3.3 v to 16 v, v out = v icm v cc /2) t = 25 c 73 87 -40c < t < 125 c 70 a vd large signal voltage gain (v out = 0.5 v to (v cc - 0.5 v), r l > 1 m ) t = 25 c 100 110 -40c < t < 125 c 90 v oh high level output voltage v id = +1 v, v oh = v cc -v out r l = 10 k , t = 25 c 70 mv r l = 10 k , -40c < t < 125 c 100 v ol low level output voltage v id = -1 v, r l = 10 k , t = 25 c 70 r l = 10 k , -40c < t < 125 c 100 v month ---------------------------
electrical characteristics tsx63x, tsx63xa 12/31 docid024293 rev 1 i out i sink v out = v cc , t = 25 c 40 92 ma v out = v cc , -40c < t < 125 c 35 i source v out = 0 v, t = 25 c 30 90 v out = 0 v, -40c < t < 125 c 25 i cc supply current (per operator, v out = v cc /2, r l > 1 m ) t = 25 c 45 60 a -40c < t < 125 c 60 ac performance gbp gain bandwidth product r l = 100 k , c l = 100 pf 160 200 khz f u unity gain frequency 160 m phase margin 55 degrees g m gain margin 9 db sr slew rate r l = 100 k , c l = 100 pf, v out = 0.5 v to v cc - 0.5v 0.12 v/ s e n low-frequency peak-to-peak input noise bandwidth: f = 0.1 to 10 hz 5 v pp e n equivalent input noise voltage f = 1 khz 60 f = 10 khz thd+n total harmonic distortion + noise follower configuration, f in = 1 khz, r l = 100 k , v icm = 8 v, bw = 22 khz, v out = 1 v pp 0.004 % 1. see chapter 4.3: input offset voltage drift over temperature on page 18 2. typical value is based on the vio drift observed after 100 0h at 125c extrapolated to 25c using the arrhenius law and assuming an activation energy of 0.7 ev. the operational amplifier is aged in follower mode configuration. see chapter 4.4: long term input offset voltage drift on page 19 . 3. guaranteed by design table 7. electrical characteristics at v cc+ = +16 v with v cc- = 0 v, v icm = v cc /2, t = 25 c, and r l =10 k connected to v cc /2 (unless otherwise specified) symbol parameter conditions min. typ. max. unit nv hz ----------- -
docid024293 rev 1 13/31 tsx63x, tsx63xa electrical characteristics figure 2. supply current vs. supply voltage at v icm = v cc /2 figure 3. input offset voltage distribution at v cc = 16 v figure 4. input offset voltage distribution at v cc = 10 v figure 5. input offset voltage vs. temperature at v cc =16 v 0246810121416 0 10 20 30 40 50 t=25c t=-40c t=125c vicm=vcc/2 supply current (a) supply voltage (v) -1500 -1000 -500 0 500 1000 1500 0 5 10 15 20 vcc=16v vicm=8v t=25c population (%) input offset voltage (v) -250 -200 -150 -100 -50 0 50 100 150 200 250 0 5 10 15 20 25 30 35 vcc=3.3v vicm=1.65v t=25c population (%) input offset voltage (v) -40-20 0 20406080100120 -3000 -2000 -1000 0 1000 2000 3000 limit for tsx63x limit for tsx63xa vcc=16v input offset voltage (v) temperature (c) figure 6. input offset voltage temperature coefficient distribution figure 7. input offset voltage vs. input common mode voltage -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 0 5 10 15 20 25 vcc=16v vicm=8v t=25c population (%) vio/ t (v/c) 0246810121416 -1000 -800 -600 -400 -200 0 200 400 600 t=25c t=-40c t=125c vcc=16v input offset voltage (v) input common mode voltage (v)
electrical characteristics tsx63x, tsx63xa 14/31 docid024293 rev 1 figure 8. output current vs. output voltage at v cc = 3.3 v figure 9. output current vs. output voltage at v cc = 16 v 0.0 0.0 0.5 0.5 1.0 1.0 1.5 1.5 2.0 2.0 2.5 2.5 3.0 3.0 -10.0 -10.0 -7.5 -7.5 -5.0 -5.0 -2.5 -2.5 0.0 0.0 2.5 2.5 5.0 5.0 7.5 7.5 10.0 10.0 source vid=1v sink vid=-1v t=-40c t=25c t=125c vcc=3.3v output current (ma) output voltage (v) 0.0 0.0 2.0 2.0 4.0 4.0 6.0 6.0 8.0 8.0 10.0 10.0 12.0 12.0 14.0 14.0 16.0 16.0 -125 -100 -100 -75 -50 -50 -25 0 0 25 50 50 75 100 100 125 source vid=1v sink vid=-1v t=-40c t=25c t=125c vcc=16v output current (ma) output voltage (v) figure 10. output low-rail linearity performance (r l 2 k ) figure 11. output high-rail linearity performance (r l 2k ) 0.00 0.05 0.10 0.15 0.20 0.00 0.05 0.10 0.15 0.20 follower configuration t=25c from vcc=3.3v to vcc=16v vout (v) vin (v) 0.00 0.05 0.10 0.15 0.20 0.00 0.05 0.10 0.15 0.20 follower configuration t=25c from vcc=3.3v to vcc=16v vcc - vout (v) vcc - vin (v) figure 12. bode diagram at v cc = 3.3 v, r l = 10 k figure 13. bode diagram at v cc = 3.3 v, r l = 100 k 1k 10k 100k 1m -20 -10 0 10 20 30 40 -270 -225 -180 -135 -90 -45 0 gain (db) frequency (hz) gain phase vcc=3.3v vicm=1.65v rl=10k cl=100pf gain=-100 t=125c t=-40c t=25c phase () 1k 10k 100k 1m -20 -10 0 10 20 30 40 -270 -225 -180 -135 -90 -45 0 gain (db) frequency (hz) gain phase vcc=3.3v vicm=1.65v rl=100k cl=100pf gain=-100 t=125c t=-40c t=25c phase ()
docid024293 rev 1 15/31 tsx63x, tsx63xa electrical characteristics figure 14. bode diagram at v cc = 16 v, r l = 10 k figure 15. bode diagram at v cc = 16 v, r l = 100 k figure 16. closed-loop gain vs. capacitive load figure 17. in-series resistor (r iso ) vs. capacitive load figure 18. negative slew rate figure 19. positive slew rate 1k 10k 100k 1m -20 -10 0 10 20 30 40 -270 -225 -180 -135 -90 -45 0 gain (db) frequency (hz) gain phase vcc=16v vicm=8v rl=10k cl=100pf gain=-100 t=125c t=-40c t=25c phase () 1k 10k 100k 1m -20 -10 0 10 20 30 40 -270 -225 -180 -135 -90 -45 0 gain (db) frequency (hz) gain phase vcc=16v vicm=8v rl=100k cl=100pf gain=-100 t=125c t=-40c t=25c phase () 1k 10k 100k 1m -15 -10 -10 -5 0 0 5 10 10 15 cl=200pf follower configuration vcc=16v vicm=8v rl=100k t=25c cl=20pf cl=100pf cl=470pf gain (db) frequency (hz) 100p 1n 10n 100n 10 100 1000 10000 unstable stable follower configuration vcc=16v vicm=8v rl=100k t=25c riso ( ) cload (f) -20 0 20 40 60 80 100 120 140 -6.0 -6.0 -5.0 -4.0 -4.0 -3.0 -2.0 -2.0 -1.0 0.0 0.0 1.0 2.0 2.0 3.0 4.0 4.0 5.0 6.0 6.0 vcc=16v vicm=vcc/2 rl=100k cl=100pf t=25c t=125c t=-40c output voltage (v) time (s) -20 0 20 40 60 80 100 120 140 -6.0 -6.0 -5.0 -4.0 -4.0 -3.0 -2.0 -2.0 -1.0 0.0 0.0 1.0 2.0 2.0 3.0 4.0 4.0 5.0 6.0 6.0 vcc=16v vicm=vcc/2 rl=100k cl=100pf t=25c t=125c t=-40c output voltage (v) time (s)
electrical characteristics tsx63x, tsx63xa 16/31 docid024293 rev 1 figure 20. slew rate vs. supply voltage figure 21. small step response figure 22. noise vs. frequency at v cc = 16 v figure 23. 0.1 hz to 10 hz noise at v cc = 16 v figure 24. thd+n vs. frequency at v cc = 16 v figure 25. thd+n vs. output voltage at v cc = 16 v 4 46 68 810 10 12 12 14 14 16 16 -0.20 -0.20 -0.15 -0.10 -0.10 -0.05 0.00 0.00 0.05 0.10 0.10 0.15 0.20 0.20 t=-40c vicm=vcc/2 vload=vcc/2 rl=100k cl=100pf t=125c t=25c slew rate (v/s) supply voltage (v) 0 10203040 -0.10 -0.10 -0.05 -0.05 0.00 0.00 0.05 0.05 0.10 0.10 vcc = 16v vicm=8v rl=100k cl=100pf t=25c output voltage (v) time (s) 10 100 1000 10000 0 0 50 100 100 150 200 200 250 300 300 350 400 400 vcc=16v vicm=vcc/2 t=25c equivalent input noise voltage (nv/vhz) frequency (hz) 0246810 -4 -2 0 2 4 vcc=16v vicm=8v t=25c input voltage noise (v) time (s) 100 1000 10000 0.01 0.1 1 vcc=16v vicm=8v gain=1 vin=1vpp bw=80khz rl=100k t=25c thd + n (%) frequency (hz) 0.01 0.1 1 10 1e-3 0.01 0.1 1 vcc=16v vicm=8v gain=1 f=1khz bw=22khz rl=100k t=25c thd + n (%) output voltage (vpp)
docid024293 rev 1 17/31 tsx63x, tsx63xa electrical characteristics figure 26. output impedance vs. frequency in closed loop configuration figure 27. psrr vs. frequency 10 100 1k 10k 100k 1m 10m 0.1 1 10 100 1000 10000 vcc=16v vicm=8v gain=1 vosc=30mv rms t=25c output impedance ( ) frequency (hz) 10 100 1k 10k 100k 1m 0 20 40 60 80 100 psrr - psrr + vcc=16v vicm=8v gain=1 rl=10k cl=100pf vosc=100mv pp t=25c psrr (db) frequency (hz)
application information tsx63x, tsx63xa 18/31 docid024293 rev 1 4 application information 4.1 operating voltages the amplifiers of the tsx63x and tsx63xa series can operate from 3.3 to 16 v. their parameters are fully specified at 3.3, 5, 10 and 16 v power supplies. however, the parameters are very stable in the full v cc range. additionally, the main specifications are guaranteed in extended temperature ranges from -40 c to +125 c. 4.2 rail-to-rail input the tsx63x and tsx63xa are built with two complementary pmos and nmos input differential pairs. the devices have a rail-to-rail input, and the input common mode range is extended from v cc- - 0.1 v to v cc+ + 0.1 v. however, the performance of these devices is clearly optimized for the pmos differential pairs (which means from v cc- - 0.1v to v cc+ - 1.65v). beyond v cc+ - 1.65 v, the op-amp is still functional but with a degraded performance as can be observed in the electrical characterist ics section of this datasheet (mainly v io ). these performances are suitable for a number of applications requiri ng rail-to-rail input and output. the devices are guaranteed without phase reversal. 4.3 input offset voltage drift over temperature the maximum input voltage drift over the temperature variation is defined as the offset variation related to offset value measured at 25 c. the operational amplifier is one of the main circuits of the signal conditioning chai n, and the amplifier input offset is a major contributor to the chain accuracy. the signal chain accuracy at 25 c can be compensated during production at application level. the ma ximum input voltage drift over temperature enables the system designer to anticipate the effect of temperature variations. the maximum input voltage drift over temperature is computed using equation 1 . equation 1 with t = -40 c and 125 c. the datasheet maximum value is guaranteed by a measurement on a representative sample size ensuring a c pk (process capability in dex) greater than 2. v io t ----------- - max v io t () v io 25 c () ? t25 c ? --------------------------------------------------- =
docid024293 rev 1 19/31 tsx63x, tsx63xa application information 4.4 long term input offset voltage drift to evaluate product reliability, two ty pes of stress acceleration are used: ? voltage acceleration, by changing the applied voltage ? temperature acceleration, by changing the die temperature (below the maximum junction temperature allowed by the technology) with the ambient temperature. the voltage acceleration has been defined bas ed on jedec results, and is defined using equation 2 . equation 2 where: a fv is the voltage acceleration factor is the voltage acceleration constant in 1/v, constant technology parameter ( = 1) v s is the stress voltage used for the accelerated test v u is the voltage used for the application the temperature acceleration is driven by the arrhenius model, and is defined in equation 3 . equation 3 where: a ft is the temperature acceleration factor e a is the activation energy of the technology based on the failure rate k is the boltzmann constant (8.6173 x 10 -5 ev.k -1 ) t u is the temperature of the die when v u is used (k) t s is the temperature of the die under temperature stress (k) the final acceleration factor, a f , is the multiplication of the voltage acceleration factor and the temperature acceleration factor ( equation 4 ). equation 4 a f is calculated using the temperature and volt age defined in the mission profile of the product. the a f value can then be used in equation 5 to calculate the number of months of use equivalent to 1000 hours of reliable stress duration. a fv e v s v u ? () ? = a ft e e a k ------ 1 t u ------ 1 t s ------ ? ?? ?? ? = a f a ft a fv =
application information tsx63x, tsx63xa 20/31 docid024293 rev 1 equation 5 to evaluate the op-amp reliability, a fo llower stress conditio n is used where v cc is defined as a function of the maximum operating voltage and the absolute maximum rating (as recommended by jedec rules). the v io drift (in v) of the product after 1000 h of stress is tracked with parameters at different measurement conditions (see equation 6 ). equation 6 the long term drift parameter ( v io ), estimating the reli ability performance of the product, is obtained using the ratio of the v io (input offset voltage value) dr ift over the square root of the calculated number of months ( equation 7 ). equation 7 where v io drift is the measured drift value in the specified test conditions after 1000 h stress duration. 4.5 high values of inpu t differential voltage in closed loop configuration, which represent s the typical use of an op-amp, the input differential voltage is low (close to v io ). however, some specific conditions can lead to higher input differential values, such as: ? operation in an output saturation state ? operation at speeds higher than the device bandwidth, with out put voltage dynamics limited by slew rate. ? use of the amplifier in a comparator configuration, hence in open loop use of the TSX631 in comparator configurati on, especially combined with high temperature and long duration can create a permanent drift of v io . all channels of the dual and quad versions of the tsx632 and tsx634 are virtually unaffected when used in comparator configuration. 4.6 pcb layouts for correct operation, it is advised to add 10 nf decoupling capacitors as close as possible to the power supply pins. months a f 1000 h 12 months 24 h 365.25 days () ? = v cc maxv op with v icm v cc 2 ? == v io v io drift months () ------------------------------ =
docid024293 rev 1 21/31 tsx63x, tsx63xa application information 4.7 macromodel accurate macromodels of the tsx63x and t sx63xa are available on stmicroelectronics? web site at www.st.com . these models are a trade-off between accuracy and complexity (that is, time simulation) of the tsx63x and tsx63xa operational amplifiers. they emulate the nominal performances of a typical devic e within the specified operating conditions mentioned in the datasheet. they also help to validate a design approach and to select the right operational amplifier, but they do not replace on-board measurements .
package information tsx63x, tsx63xa 22/31 docid024293 rev 1 5 package information in order to meet environmental requirements, st offers these devices in different grades of ecopack ? packages, depending on their level of environmental compliance. ecopack ? specifications, grade definitions a nd product status are available at: www.st.com . ecopack ? is an st trademark.
docid024293 rev 1 23/31 tsx63x, tsx63xa package information 5.1 sot23-5 package information figure 28. sot23-5 package mechanical drawing table 8. sot23-5 package mechanical data ref. dimensions millimeters inches min. typ. max. min. typ. max. a 0.90 1.20 1.45 0.035 0.047 0.057 a1 0.15 0.006 a2 0.90 1.05 1.30 0.035 0.041 0.051 b 0.35 0.40 0.50 0.013 0.015 0.019 c 0.09 0.15 0.20 0.003 0.006 0.008 d 2.80 2.90 3.00 0.110 0.114 0.118 d1 1.90 0.075 e 0.95 0.037 e 2.60 2.80 3.00 0.102 0.110 0.118 f 1.50 1.60 1.75 0.059 0.063 0.069 l 0.10 0.35 0.60 0.004 0.013 0.023 k0 10 0 10
package information tsx63x, tsx63xa 24/31 docid024293 rev 1 5.2 dfn8 2x2 pack age information figure 29. dfn8 2x2 package mechanical drawing table 9. dfn8 2x2 package mechanical data ref. dimensions millimeters inches min. typ. max. min. typ. max. a 0.70 0.75 0.80 0.028 0.030 0.031 a1 0.00 0.02 0.05 0.000 0.001 0.002 b 0.15 0.20 0.25 0.006 0.008 0.010 d 2.00 0.079 e 2.00 0.079 e 0.50 0.020 l 0.045 0.55 0.65 0.018 0.022 0.026 n8 8 h / %277209,(:   3lq,'  3,1,1'(;$5($  (  & $ $ 3/$1( 6($7,1* 7239,(:  &  & [ [ ' 3,1,1'(;$5($ e sofv  &  & $ % % $ & 6,'(9,(: *$06&%
docid024293 rev 1 25/31 tsx63x, tsx63xa package information 5.3 miniso-8 package information figure 30. miniso-8 pack age mechanical drawing table 10. miniso-8 package mechanical data ref. dimensions millimeters inches min. typ. max. min. typ. max. a 1.1 0.043 a1 0 0.15 0 0.006 a2 0.75 0.85 0.95 0.030 0.033 0.037 b 0.22 0.40 0.009 0.016 c 0.08 0.23 0.003 0.009 d 2.80 3.00 3.20 0.11 0.118 0.126 e 4.65 4.90 5.15 0.183 0.193 0.203 e1 2.80 3.00 3.10 0.11 0.118 0.122 e 0.65 0.026 l 0.40 0.60 0.80 0.016 0.024 0.031 l1 0.95 0.037 l2 0.25 0.010 k0 8 0 8 ccc 0.10 0.004
package information tsx63x, tsx63xa 26/31 docid024293 rev 1 5.4 qfn16 3x3 package information figure 31. qfn16 3x3 package mechanical drawing h %277209,(: 3lq,'   ( & $ $ 3/$1( 6($7,1*  & & [ [ ' e  & & $ % % $ & 6,'(9,(: *$06&%  ,1'(;$5($  '[( ddd ddd 7239,(: fff hhh /  eee eee &     5
docid024293 rev 1 27/31 tsx63x, tsx63xa package information table 11. qfn16 3x3 package mechanical data ref. dimensions millimeters inches min. typ. max. min. typ. max. a 0.50 0.65 0.020 0.026 a1 0 0.05 0 0.002 b 0.18 0.25 0.30 0.007 0.010 0.012 d3.00 0.118 e3.00 0.118 e 0.50 0.020 l 0.30 0.50 0.012 0.020 aaa 0.15 0.006 bbb 0.10 0.004 ccc 0.10 0.004 ddd 0.05 0.002 eee 0.08 0.003
package information tsx63x, tsx63xa 28/31 docid024293 rev 1 5.5 tssop14 package information figure 32. tssop14 package mechanical drawing table 12. tssop14 package mechanical data ref. dimensions millimeters inches min. typ. max. min. typ. max. a1.200.047 a1 0.05 0.15 0.002 0.004 0.006 a2 0.80 1.00 1.05 0.031 0.039 0.041 b 0.19 0.30 0.007 0.012 c 0.09 0.20 0.004 0.0089 d 4.90 5.00 5.10 0.193 0.197 0.201 e 6.20 6.40 6.60 0.244 0.252 0.260 e1 4.30 4.40 4.50 0.169 0.173 0.176 e 0.65 0.0256 l 0.45 0.60 0.75 0.018 0.024 0.030 l1 1.00 0.039 k0 8 0 8 aaa 0.10 0.004
docid024293 rev 1 29/31 tsx63x, tsx63xa ordering information 6 ordering information table 13. order codes order code temperature range no. of channels package packing marking TSX631ilt -40 to 125 c 1sot23-5 tape and reel k27 tsx632iq2t 2 dfn8 2x2 k27 tsx632ist 2 miniso8 k27 tsx634iq4t 4 qfn16 3x3 k27 tsx634ipt 4 tssop14 tsx634i TSX631iylt -40 to 125 c automotive grade (1) 1. qualification and characterization according to aec q100 and q003 or equivalent, advanced screening according to aec q001 & q 002 or equivalent are on-going. 1 sot23-5 k188 tsx632iyst 2 miniso8 k188 tsx634iypt 4 tssop14 tsx634iy TSX631ailt -40 to 125 c 1 sot23-5 k189 tsx632aist 2 miniso8 k189 tsx634aipt 4 tssop14 tsx634ai TSX631aiylt -40 to 125c automotive grade (1) 1 sot23-5 k190 tsx632aiyst 2 miniso8 k190 tsx634aiypt 4 tssop14 tsx634aiy
revision history tsx63x, tsx63xa 30/31 docid024293 rev 1 7 revision history table 14. document revision history date revision changes 26-mar-2013 1 initial release
docid024293 rev 1 31/31 tsx63x, tsx63xa please read carefully: information in this document is provided solely in connection with st products. stmicroelectronics nv and its subsidiaries (?st ?) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described he rein at any time, without notice. all st products are sold pursuant to st?s terms and conditions of sale. purchasers are solely responsible for the choice, selection and use of the st products and services described herein, and st as sumes no liability whatsoever relating to the choice, selection or use of the st products and services described herein. no license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. i f any part of this document refers to any third party products or services it shall not be deemed a license grant by st for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoev er of such third party products or services or any intellectual property contained therein. unless otherwise set forth in st?s terms and conditions of sale st disclaims any express or implied warranty with respect to the use and/or sale of st products including without limitation implied warranties of merchantability, fitness for a parti cular purpose (and their equivalents under the laws of any jurisdiction), or infringement of any patent, copyright or other intellectual property right. st products are not authorized for use in weapons. nor are st products designed or authorized for use in: (a) safety critical applications such as life supporting, active implanted devices or systems with product functional safety requirements; (b) aeronautic applications; (c) automotive applications or environments, and/or (d) aerospace applications or environments. where st products are not designed for such use, the purchaser shall use products at purchaser?s sole risk, even if st has been informed in writing of such usage, unless a product is expressly designated by st as being intended for ?automotive, automotive safety or medical? industry domains according to st product design specifications. products formally escc, qml or jan qualified are deemed suitable for use in aerospace by the corresponding governmental agency. resale of st products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by st for the st product or service described herein and shall not create or extend in any manner whatsoev er, any liability of st. st and the st logo are trademarks or registered trademarks of st in various countries. information in this document supersedes and replaces all information previously supplied. the st logo is a registered trademark of stmicroelectronics. all other names are the property of their respective owners. ? 2013 stmicroelectronics - all rights reserved stmicroelectronics group of companies australia - belgium - brazil - canada - china - czech republic - finland - france - germany - hong kong - india - israel - ital y - japan - malaysia - malta - morocco - philippines - singapore - spain - sweden - switzerland - united kingdom - united states of america www.st.com


▲Up To Search▲   

 
Price & Availability of TSX631

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X