s m s m d ty p e m o s f e t 1 0.4 +0.1 -0.1 2.9 +0.1 -0.1 0.95 +0.1 -0.1 1.9 +0.1 -0.1 2. 4 + 0 . 1 - 0 . 1 1. 3 + 0 . 1 - 0 . 1 0- 0. 1 0. 38 + 0 . 1 - 0 . 1 0. 97 + 0 . 1 - 0 . 1 0. 55 0. 4 1.base 2.emitter 3.collector 1 2 3 unit: mm sot-23 0.1 +0.05 -0.01 1. gate 2. source 3. dra i n w w w . k e x i n . c o m . c n features ultra low on-resistanc e. p-channe l mosfet. fast s w itc hing. absolute maxim um rating s t a = 2 5 i rl m l 6401 ( k r lm l6 4 0 1 ) p-cha nne l enha nc e m e nt mo s f e t p ar am eter s y m bol rati ng uni t dr ai n- s our c e v ol tage v d s - 12 g ate- s our c e v ol tage v g s 8 conti nuous dr ai n cur r ent v g s = 4.5v @ t a = 25 - 4.3 conti nuous dr ai n cur r ent v g s = 4.5v @ t a = 70 - 3.4 p ul s ed dr ai n cur r ent a i d m - 34 p ow er di s s i pati on @ t a = 25 p d 1.3 p ow er di s s i pati on @ t a = 70 0.8 s i ngl e p ul s e a v al anc he e ner gy b e a s 33 m j t her m al res i s tanc e.j unc ti on- to- a m b i ent r t h ja 100 /w li ner a der ati ng f ac tor 0.01 w / j unc ti on t em per atur e t j 150 j unc ti on and s tor age t em per atur e range t st g - 55 to 150 v i d a w notes : a.repeti ti v e rati ng :p ul s e w i dth l i m i ted by m ax i m um j unc ti on tem per atur e b.s tar ti ng t j = 25 , l= 3.5m h, r g = 25 , i a s = - 4.3a
2 i e l e c tr i c a l ch a r a c te r i s ti c s t a = 2 5 p a r a m e t e r s y m b o l t e s t c o n d i t i o n s m i n t y p m a x u n i t d r a i n - s o u r c e b r e a k d o w n v o l t a g e v d s s i d = - 2 5 0 a , v g s = 0 v - 1 2 v v d s = - 1 2 v , v g s = 0 v - 1 v d s = - 9 . 6 v , v g s = 0 v , t j = 55 - 2 5 g a t e - b o d y l e a k a g e c u r r e n t i g s s v d s = 0 v , v g s = 8 v 1 0 0 n a g a t e t h r e s h o l d v o l t a g e v g s ( t h ) v d s = v g s i d = - 2 5 0 a - 0 . 4 - 0 . 5 5 - 0 . 9 5 v v g s = - 4 . 5 v , i d = - 4 . 3 a 5 0 v g s = - 2 . 5 v , i d = - 2 . 5 a 8 5 v g s = - 1 . 8 v , i d = - 2 a 1 2 5 f o r w a r d t r a n s c o n d u c t a n c e g f s v d s = - 1 0 v , i d = - 4 . 3 a 8 . 6 s i n p u t c a p a c i t a n c e c i s s 8 3 0 o u t p u t c a p a c i t a n c e c o ss 1 8 0 r e v e r s e t r a n s f e r c a p a c i t a n c e c r ss 1 2 5 t o t a l g a t e c h a r g e q g 1 0 1 5 g a t e s o u r c e c h a r g e q g s 1 . 4 2 . 1 g a t e d r a i n c h a r g e q g d 2 . 6 3 . 9 t u r n - o n d e l a y t i m e t d ( o n ) 1 1 t u r n - o n r i s e t i m e t r 3 2 t u r n - o f f d e l a y t i m e t d ( o f f ) 2 5 0 t u r n - o f f f a l l t i m e t f 2 1 0 b o d y d i o d e r e v e r s e r e c o v e r y t i m e t r r i f = - 1 . 3 a , d i / d t = - 1 0 0 a / s 2 2 3 3 b o d y d i o d e r e v e r s e r e c o v e r y c h a r g e q r r i f = - 1 . 3 a , d i / d t = - 1 0 0 a / s 8 1 2 n c m a x i m u m b o d y - d i o d e c o n t i n u o u s c u r r e n t i s 1 . 3 a d i o d e f o r w a r d v o l t a g e v s d i s = - 1 . 3 a , v g s = 0 v - 1 . 2 v v g s = 0 v , v d s = - 1 0 v , f = 1 m h z v g s = - 5 . 0 v , v d s = - 1 0 v , i d = - 4 . 3 a p f n c n s z e r o g a t e v o l t a g e d r a i n c u r r e n t i d s s a m i d = - 1 . 0 a , v d s = - 6 . 0 v , r l = 6 , r g e n = 8 9 r d s ( o n ) s t a t i c d r a i n - s o u r c e o n - r e s i s t a n c e mar k ing m ar k i ng 1f * i rl m l 6401 ( k r lm l6 4 0 1 )
s m d ty p e w w w . ke x in . com . c n 3 m osfe t ty pic al c har ac t er is it ic s fig 4. normalized on-resistance vs. temperature fig 2. typical output characteristics fig 1. typical output characteristics fig 3. typical transfer characteristics 0 . 1 1 1 0 1 0 0 - v d s , d r a i n - t o - s o u r c e v o l t ag e ( v ) 0 . 0 1 0 . 1 1 1 0 1 0 0 - i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) - 1 . 0 v 2 0 s p u l s e w i d t h t j = 15 0 c v g s t o p - 7 . 0 v - 5 . 0 v - 4 . 5 v - 3 . 0 v - 2 . 5 v - 1 . 8 v - 1 . 5 v b o t t o m - 1 . 0 v 1 . 0 1 . 5 2 . 0 2 . 5 3 . 0 3 . 5 4 . 0 - v g s , g at e- t o- s our ce v ol t age ( v ) 0 . 1 1 . 0 1 0 . 0 10 0 . 0 - i d , d r a i n - t o - s o u r c e c u r r e n t ( ) t j = 25 c t j = 150 c v d s = - 12 v 20 s p u ls e w i d t h - 6 0 - 4 0 - 2 0 0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 0 . 0 0 . 5 1 . 0 1 . 5 2 . 0 t , j u n cti o n t e m p e ra tu re ( c ) r , drain-to-source on resistance (normalized) j d s ( o n ) v = i = g s d - 4 . 5 v - 4 . 3 a 0 . 1 1 1 0 1 0 0 - v d s , d r a i n - t o - s o u r c e v o l t ag e ( v ) 0 . 0 1 0 . 1 1 1 0 1 0 0 - i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) - 1 . 0 v 2 0 s p u l s e w i d t h t j = 2 5 c v g s t o p - 7 . 0 v - 5 . 0 v - 4 . 5 v - 3 . 0 v - 2 . 5 v - 1 . 8 v - 1 . 5 v b o t t o m - 1 . 0 v i rl m l 6401 ( k r lm l6 4 0 1 )
s m d ty p e w w w . k exi n . co m . c n 4 m osfe t . www . ir f. c o m fig 8. maximum safe operating area f i g 6 . typical gate charge vs. gate-to-source voltage fig 5. typical capacitance vs. drain-to-source voltage fig 7. typical source-drain diode forward voltage 0 . 1 1 1 0 1 0 0 10 0 0 0 . 1 1 1 0 1 0 0 o p e r a t io n in t h is a r e a l im it e d b y r d s ( o n ) s i n g l e p u l s e t t = 15 0 c = 2 5 c j c - v , d r a i n - t o - s o u r c e v o l t a g e ( v ) - i , drai n curren t ( a ) i , drai n curren t ( a ) d s d 10 u s 100 u s 1 m s 1 0 m s 1 1 0 1 0 0 v d s , d r a i n - t o - s o u r c e v o l t ag e ( v ) 0 2 0 0 4 0 0 6 0 0 8 0 0 10 0 0 12 0 0 c , c a p a c i t a n c e ( p f ) c o s s c r s s c i s s v g s = 0 v , f = 1 m h z c i s s = c g s + c g d , c d s s h o r t e d c r s s = c g d c o s s = c d s + c g d 0 . 1 1 1 0 1 0 0 0 . 2 0 . 6 1 . 0 1 . 4 1 . 8 - v , s o u r c e - t o - d r a i n v o l t ag e ( v ) - i , r e v ers e d r a i n c u rre n t ( a ) s d s d v = 0 v g s t = 2 5 c j t = 15 0 c j 0 4 8 1 2 1 6 0 2 4 6 8 1 0 q , t o ta l g a te c h a rg e (n c ) -v , gate-to-source voltage (v) g g s i = d - 4 . 3 a v = - 1 0 v d s ty pic al c har ac t er is it ic s i rl m l 6401 ( k r lm l6 4 0 1 )
s m d ty p e w w w . ke x in . com . c n 5 m osfe t ty pic al c har ac t er is it ic s www . ir f. c o m f ig 11 . maximum effective transient thermal impedance, junction-to-ambient fig 9. maximum drain current vs. case temperature f ig 1 0 . maximum avalanche energy vs. drain current 2 5 5 0 7 5 1 0 0 1 2 5 1 5 0 0 . 0 1 . 0 2 . 0 3 . 0 4 . 0 5 . 0 t , ca s e t e m pera t u r e ( c ) - i , drai n curren t ( a ) c d 0 . 1 1 1 0 1 0 0 10 0 0 0 . 000 0 1 0 . 00 0 1 0 . 0 0 1 0 . 0 1 0 . 1 1 1 0 n o t e s : 1 . d u t y f a c t o r d = t / t 2 . p e a k t = p x z + t 1 2 j d m t h j a a p t t d m 1 2 t , r e c t a ng u l a r p u l s e d u r a t i o n ( s e c) t h e r m a l r e s po n s e ( z ) 1 t h j a 0 . 0 1 0 . 0 2 0 . 0 5 0 . 1 0 0 . 2 0 d = 0 . 5 0 s i n g l e p u l s e ( t h e r m a l r esp o n s e ) 2 5 5 0 7 5 1 0 0 1 2 5 1 5 0 0 2 0 4 0 6 0 8 0 s ta rti n g t , j u n cti o n t e m p e ra tu re ( c ) e , single pulse avalanche energy (mj) j a s i d t o p b o t t o m - 1 . 9 a - 3 . 4 a - 4 . 3 a i rl m l 6401 ( k r lm l6 4 0 1 )
s m d ty p e w w w . kexin . com . c n 6 m osfe t ty pic al c har ac t er is it ic s f ig 1 3 . typical on-resistance vs. drain current f ig 1 2 . typical on-resistance vs. gate voltage 0 1 0 2 0 3 0 4 0 - i d , d r a i n c u r r e n t ( a ) 0 . 0 0 0 . 0 5 0 . 1 0 0 . 1 5 0 . 2 0 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( ) v g s = - 4 . 5 v v g s = - 2 . 5 v v g s = - 1 . 8 v fig 14. typical threshold voltage vs. j u n c t io n t e m p e r a t u r e - 7 5 - 5 0 - 2 5 0 2 5 5 0 7 5 1 0 0 1 2 5 1 5 0 t j , t e m p e r a t u r e ( c ) 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 - v g s ( t h ) g a t e t h r e s h o l d v o l t a g e ( v ) i d = - 25 0 a 1 . 0 2 . 0 3 . 0 4 . 0 5 . 0 6 . 0 7 . 0 - v g s , g a t e - t o - s o u r c e v o l t ag e ( v ) 0 . 0 2 0 . 0 3 0 . 0 4 0 . 0 5 0 . 0 6 0 . 0 7 0 . 0 8 0 . 0 9 0 . 1 0 r d s ( o n ) , d r a i n - t o - s o u r c e v o l t a g e ( ) i d = - 4 . 3 a i rl m l 6401 ( k r lm l6 4 0 1 )
|