![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
insulated gate bipolar transistor 05/17/05 www.irf.com 1 irgb30b60kpbfIRGS30B60KPBF irgsl30b60kpbf v ces = 600v i c = 50a, t c =100c at t j =175c t sc > 10s, t j =150c v ce(on) typ. = 1.95v features low vce (on) non punch through igbt technology 10s short circuit capability square rbsoa positive vce (on) temperature coefficient maximum junction temperature rated at 175c lead-free benefits benchmark efficiency for motor control rugged transient performance low emi excellent current sharing in parallel operation d 2 pak IRGS30B60KPBF to-220ab irgb30b60kpbf to-262 irgsl30b60kpbf e c g n-channel * r jc (end of life) = 0.65c/w. this is the maximum measured value after 1000 temperature cycles from -55 to 150c and is accounted for by the physical wearout of the die attach medium. absolute maximum ratings parameter max. units v ces collector-to-emitter voltage 600 v i c @ t c = 25c continuous collector current 78 i c @ t c = 100c continuous collector current 50 a i cm pulse collector current (ref.fig.c.t.5) 120 i lm clamped inductive load current 120 v isol rms isolation voltage, terminal to case, t=1 min. 2500 v v ge gate-to-emitter voltage 20 p d @ t c = 25c maximum power dissipation 370 w p d @ t c = 100c maximum power dissipation 180 t j operating junction and -55 to +175 t stg storage temperature range c soldering temperature, for 10 sec. 300 (0.063 in. (1.6mm) from case) mounting torque, 6-32 or m3 screw 10 lbfin (1.1 nm) thermal / mechanical characteristics parameter min. typ. max. units r jc junction-to-case- igbt CCC CCC 0.41* c/w r cs case-to-sink, flat, greased surface CCC 0.50 CCC r ja junction-to-ambient, typical socket mount CCC CCC 62 r ja junction-to-ambient (pcb mount, steady state) CCC CCC 40 wt weight CCC 1.44 CCC g downloaded from: http:///
irgb/s/sl30b60kpbf 2 www.irf.com note to are on page 13 electrical characteristics @ t j = 25c (unless otherwise specified) parameter min. typ. max. units conditions ref.fig. v (br)ces collector-to-emitter breakdown voltage 6 0 0v v ge = 0v, i c = 500a ? v (br)ces / ? t j temperature coeff. of breakdown volta g e 0.40v/c v ge = 0v, i c = 1ma (25c-150c) 1.952.35 i c = 30a, v ge = 15v, t j = 25c 5,6,7 v ce(on) collector-to-emitter voltage 2.40 2.75 v i c = 30a, v ge = 15v, t j = 150c 8,9,10 2.6 2.95 i c = 30a, v ge = 15v, t j = 175c v ge(th) gate threshold voltage 3.5 4.5 5.5 v v ce = v ge , i c = 250a 8,9,10 ? v ge(th) / ? t j threshold voltage temp. coefficient -10 mv/ c v ce = v ge , i c = 1.0ma (25c-150c) 11 gfe forward transconductance 18 s v ce = 50v, i c = 50a, pw = 80s 5 . 02 5 0 v ge = 0v, v ce = 600v i ces zero gate voltage collector current 1000 2000 a v ge = 0v, v ce = 600v, t j = 150c 18303000 v ge = 0v, v ce = 600v, t j = 175c i ges gate-to-emitter leakage current 100 na v ge = 20v, v ce = 0v switchin g characteristics @ t j = 25c (unless otherwise specified) parameter min. typ. max. units conditions ref.fig. q g total gate charge (turn-on) 102 153 i c = 30a 17 q ge gate-to-emitter charge (turn-on) 14 21 nc v cc = 400v ct1 q gc gate-to-collector charge (turn-on) 44 66 v ge = 15v e on turn-on switching loss 350 620 i c = 30a, v cc = 400v ct4 e off turn-off switching loss 825 955 j v ge = 15v, r g = 10 ? , l = 200h e tot total switching loss 1175 1575 t j = 25c t d(on) turn-on delay time 46 60 i c = 30a, v cc = 400v t r rise time 28 39 ns v ge = 15v, r g = 10 ? , l = 200h ct4 t d(off) turn-off delay time 185 200 t j = 25c t f fall time 31 40 e on turn-on switching loss 635 1085 i c = 30a, v cc = 400v ct4 e off turn-off switching loss 1150 1350 j v ge = 15v, r g = 10 ? , l = 200h 12,14 e tot total switching loss 1785 2435 t j = 150c wf1,wf2 t d(on) turn-on delay time 46 60 i c = 30a, v cc = 400v 13,15 t r rise time 28 39 ns v ge = 15v, r g = 10 ? , l = 200h ct4 t d(off) turn-off delay time 205 235 t j = 150c wf1 t f fall time 32 42 wf2 l e internal emitter inductance 7.5 nh measured 5mm from package c ies input capacitance 1750 2500 v ge = 0v c oes output capacitance 160 255 pf v cc = 30v 16 c res reverse transfer capacitance 60 90 f = 1.0mhz rbsoa reverse bias safe operating area full square t j = 150c, i c = 120a, vp = 600v 4 v cc =500v,v ge = +15v to 0v,r g =10 ? ct2 scsoa short circuit safe operating area 10 s t j = 150c, vp = 600v, r g = 10 ? ct3 v cc =360v,v ge = +15v to 0v wf3 i sc (peak) peak short circuit collector current 200 a wf3 downloaded from: http:/// irgb/s/sl30b60kpbf www.irf.com 3 fig. 1 - maximum dc collector current vs. case temperature fig. 2 - power dissipation vs. case temperature fig. 3 - forward soa t c = 25c; t j 150c fig. 4 - reverse bias soa t j = 150c; v ge =15v 1 10 100 1000 10000 v ce (v) 0.1 1 10 100 1000 i c ( a ) 10 s 100 s 1ms dc 10 100 1000 v ce (v) 1 10 100 1000 i c a ) 0 20 40 60 80 100 120 140 160 180 t c (c) 0 10 20 30 40 50 60 70 80 i c ( a ) 0 20 40 60 80 100 120 140 160 180 t c (c) 0 50 100 150 200 250 300 350 400 p t o t ( w ) downloaded from: http:/// irgb/s/sl30b60kpbf 4 www.irf.com fig. 6 - typ. igbt output characteristics t j = 25c; tp = 80s fig. 5 - typ. igbt output characteristics t j = -40c; tp = 80s fig. 7 - typ. igbt output characteristics t j = 150c; tp = 80s 012345 v ce (v) 0 10 20 30 40 50 60 i c e ( a ) v ge = 18v v ge = 15v v ge = 12v v ge = 10v v ge = 8.0v 012345 v ce (v) 0 10 20 30 40 50 60 i c e ( a ) v ge = 18v v ge = 15v v ge = 12v v ge = 10v v ge = 8.0v 012345 v ce (v) 0 10 20 30 40 50 60 i c e ( a ) v ge = 18v v ge = 15v v ge = 12v v ge = 10v v ge = 8.0v downloaded from: http:/// irgb/s/sl30b60kpbf www.irf.com 5 fig. 11 - typ. transfer characteristics v ce = 50v; tp = 10s fig. 10 - typical v ce vs. v ge t j = 150c fig. 9 - typical v ce vs. v ge t j = 25c fig. 8 - typical v ce vs. v ge t j = -40c 5 1 01 52 0 v ge (v) 0 2 4 6 8 10 12 14 16 18 20 v c e ( v ) i ce = 15a i ce = 30a i ce = 60a 5 1 01 52 0 v ge (v) 0 2 4 6 8 10 12 14 16 18 20 v c e ( v ) i ce = 15a i ce = 30a i ce = 60a 51 01 52 0 v ge (v) 0 2 4 6 8 10 12 14 16 18 20 v c e ( v ) i ce = 15a i ce = 30a i ce = 60a 0 5 10 15 20 v ge (v) 0 50 100 150 200 250 i c e ( a ) t j = 25c t j = 150c t j = 150c t j = 25c downloaded from: http:/// irgb/s/sl30b60kpbf 6 www.irf.com fig. 15 - typ. switching time vs. r g t j = 150c; l=200h; v ce = 400v i ce = 30a; v ge = 15v fig. 14 - typ. energy loss vs. r g t j = 150c; l=200h; v ce = 400v i ce = 30a; v ge = 15v fig. 13 - typ. switching time vs. i c t j = 150c; l=200h; v ce = 400v r g = 10 ? ; v ge = 15v fig. 12 - typ. energy loss vs. i c t j = 150c; l=200h; v ce = 400v, r g = 10 ? ; v ge = 15v 0 2 04 06 08 0 i c (a) 0 500 1000 1500 2000 2500 3000 e n e r g y ( j ) e off e on 0 20 40 60 80 i c (a) 10 100 1000 s w i c h i n g t i m e ( n s ) t r td off t f td on 0 25 50 75 100 125 r g ( ? ) 0 500 1000 1500 2000 2500 3000 e n e r g y ( j ) e on e off 0 25 50 75 100 125 r g ( ? ) 10 100 1000 10000 s w i c h i n g t i m e ( n s ) t r td off t f td on downloaded from: http:/// irgb/s/sl30b60kpbf www.irf.com 7 fig 18. maximum transient thermal impedance, junction-to-case (igbt) fig. 16 - typ. capacitance vs. v ce v ge = 0v; f = 1mhz fig. 17 - typical gate charge vs. v ge i ce = 30a; l = 600h 0 20 40 60 80 100 v ce (v) 10 100 1000 10000 c a p a c i t a n c e ( p f ) cies coes cres 0 25 50 75 100 125 q g , total gate charge (nc) 0 2 4 6 8 10 12 14 16 v g e ( v ) 200v 400v 1e-006 1e-005 0.0001 0.001 0.01 0.1 1 t 1 , rectangular pulse duration (sec) 0.0001 0.001 0.01 0.1 1 10 t h e r m a l r e s p o n s e ( z t h j c ) 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthjc + tc ri (c/w) i (sec) 0.200 0.0004280.209 0.013031 j j 1 1 2 2 r 1 r 1 r 2 r 2 c ci i / ri ci= i / ri downloaded from: http:/// irgb/s/sl30b60kpbf 8 www.irf.com fig.c.t.1 - gate charge circuit (turn-off) fig.c.t.2 - rbsoa circuit 1k vcc dut 0 l fig.c.t.3 - s.c.soa circuit fig.c.t.4 - switching loss circuit fig.c.t.5 - resistive load circuit l rg vcc diode clamp / dut dut / driver - 5v rg vcc dut r = v cc i cm l rg 80 v dut 480v + - dc driver dut 360v downloaded from: http:/// irgb/s/sl30b60kpbf www.irf.com 9 fig. wf3- typ. s.c waveform @ t c = 150c using fig. ct.3 fig. wf1- typ. turn-off loss waveform @ t j = 150c using fig. ct.4 fig. wf2- typ. turn-on loss waveform @ t j = 150c using fig. ct.4 -100 0 100 200 300 400 500 600 700 -0.20 0.00 0.20 0.40 0.60 0.80 time(s) v ce (v) -5 0 5 10 15 20 25 30 35 i ce (a) 90% i ce 5% v ce 5% i ce eof f loss tf -100 0 100 200 300 400 500 600 700 15.90 16.00 16.10 16.20 16.30 time (s) v ce (v) -10 0 10 20 30 40 50 60 70 i ce (a) test current 90% test current 5% v ce 10% test curren t tr eon loss 0 100 200 300 400 500 600 -5.00 0.00 5.00 10.00 15.00 time (s) v ce (v) 0 50 100 150 200 250 300 i ce (a) v ce i ce downloaded from: http:/// irgb/s/sl30b60kpbf 10 www.irf.com |