![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
1/32 n operating from v cc = 2.2v to 5.5v n 1w rai l to rail output power @ vcc=5v, thd=1%, f=1khz, with 8 w load n ultra low consumption in standby mode (10na) n 75db psrr @ 217hz from 5 to 2.2v n pop & click reduction circuitry n ultra low distortion (0.1%) n unity gain stable n available in so8, miniso8 & dfn8 description the ts4890 (miniso8 & so8) is an audio power amplifier capable of delivering 1w of continuous rms. ouput power into 8 w load @ 5v. this audio amplifier is exhibiting 0.1% distortion level (thd) from a 5v supply for a pout = 250mw rms. an external standby mode control reduces the supply current to less than 10na. an internal thermal shutdown protection is also provided. the ts4890 have been designed for high quality audio applications such as mobile phones and to minimize the number of external components. the unity-gain stable amplifier can be configured by external gain setting resistors. applications n mobile phones (cellular / cordless) n laptop / notebook computers n pdas n portable audio devices order code miniso & dfn only available in tape & reel: with t suffix. so is available in tube (d) and of tape & reel (dt) pin connections (top view) part number temperature range package marking sdq ts4890 -40, +85c 4890i 4890 4890 standby bypass v+ in v in- v2 out gnd v cc v out1 1 2 3 4 8 7 6 5 rin cin rstb cb rfeed 4 3 2 1 5 8 vin- vin+ - + - + bypass standby bias 6 vout1 vout2 av=-1 ts4890 rl 8 ohms vcc gnd audio input vcc vcc cfeed cs 7 typical application schematic ts4890ist - miniso8 ts4890id, ts4890idt - so8 standby bypass v+ in v in- v2 out gnd v cc v out1 1 2 3 4 8 7 6 5 TS4890IQT - dfn8 1 2 3 4 5 8 7 6 standby bypass v out 2 v in- v in+ vcc v out 1 gnd 1 2 3 4 5 8 7 6 standby bypass v out 2 v in- v in+ vcc v out 1 gnd ts4890 rail to rail output 1w audio power amplifier with standby mode active low june 2003
ts4890 2/32 absolute maximum ratings operating conditions symbol parameter value unit v cc supply voltage 1) 6v v i input voltage 2) g nd to v cc v t oper operating free air temperature range -40 to + 85 c t stg storage temperature -65 to +150 c t j maximum junction temperature 150 c r thja thermal resistance junction to ambient 3) so8 miniso8 dfn8 175 215 70 c/w pd power dissipation 4) see power derating curves fig. 24 w esd human body model 2 kv esd machine model 200 v latch-up immunity class a lead temperature (soldering, 10sec) 260 c 1. all voltages values are measured with respect to the ground pin. 2. the magnitude of input signal must never exceed v cc + 0.3v / g nd - 0.3v 3. device is protected in case of over temperature by a thermal shutdown active @ 150c. 4. exceeding the power derating curves during a long period may involve abnormal working of the device. symbol parameter value unit v cc supply voltage 2.2 to 5.5 v v icm common mode input voltage range g nd + 1v to v cc v v stb standby voltage input : device on device off 1.5 v stb v cc g nd v stb 0.5 v r l load resistor 4 - 32 w r thja thermal resistance junction to ambient 1) so8 miniso8 dfn8 2) 150 190 41 c/w 1. this thermal resistance can be reduced with a suitable pcb layout (see power derating curves fig. 24) 2. when mounted on a 4 layers pcb ts4890 3/32 electrical characteristics v cc = +5v , gnd = 0v , t amb = 25c (unless otherwise specified) v cc = +3.3v , gnd = 0v , t amb = 25c (unless otherwise specified) symbol parameter min. typ. max. unit i cc supply current no input signal, no load 68ma i standby standby current 1) no input signal, vstdby = g nd , rl = 8 w 1. standby mode is actived when vstdby is tied to gnd 10 1000 na voo output offset voltage no input signal, rl = 8 w 520mv po output power thd = 1% max, f = 1khz, rl = 8 w 1w thd + n total harmonic distortion + noise po = 250mw rms, gv = 2, 20hz < f < 20khz, rl = 8 w 0.15 % psrr power supply rejection ratio 2) f = 217hz, rl = 8 w, rfeed = 22k w, vripple = 200mv rms 2. dynamic measurements - 20*log(rms(vout)/rms(vripple)). vripple is the surimposed sinus signal to vcc @ f = 217hz 77 db f m phase margin at unity gain r l = 8 w , c l = 500pf 70 degrees gm gain margin r l = 8 w , c l = 500pf 20 db gbp gain bandwidth product r l = 8 w 2mhz symbol parameter min. typ. max. unit i cc supply current no input signal, no load 5.5 8 ma i standby standby current 1) no input signal, vstdby = g nd , rl = 8 w 1. standby mode is actived when vstdby is tied to gnd 10 1000 na voo output offset voltage no input signal, rl = 8 w 520mv po output power thd = 1% max, f = 1khz, rl = 8 w 450 mw thd + n total harmonic distortion + noise po = 250mw rms, gv = 2, 20hz < f < 20khz, rl = 8 w 0.15 % psrr power supply rejection ratio 2) f = 217hz, rl = 8 w, rfeed = 22k w, vripple = 200mv rms 2. dynamic measurements - 20*log(rms(vout)/rms(vripple)). vripple is the surimposed sinus signal to vcc @ f = 217hz 77 db f m phase margin at unity gain r l = 8 w , c l = 500pf 70 degrees gm gain margin r l = 8 w , c l = 500pf 20 db gbp gain bandwidth product r l = 8 w 2mhz ts4890 4/32 v cc = 2.6v , gnd = 0v , t amb = 25c (unless otherwise specified) v cc = 2.2v , gnd = 0v , t amb = 25c (unless otherwise specified) symbol parameter min. typ. max. unit i cc supply current no input signal, no load 58ma i standby standby current 1) no input signal, vstdby = g nd , rl = 8 w 1. standby mode is actived when vstdby is tied to gnd 10 1000 na voo output offset voltage no input signal, rl = 8 w 520mv po output power thd = 1% max, f = 1khz, rl = 8 w 260 mw thd + n total harmonic distortion + noise po = 200mw rms, gv = 2, 20hz < f < 20khz, rl = 8 w 0.15 % psrr power supply rejection ratio 2) f = 217hz, rl = 8 w, rfeed = 22k w, vripple = 200mv rms 2. dynamic measurements - 20*log(rms(vout)/rms(vripple)). vripple is the surimposed sinus signal to vcc @ f = 217hz 77 db f m phase margin at unity gain r l = 8 w , c l = 500pf 70 degrees gm gain margin r l = 8 w , c l = 500pf 20 db gbp gain bandwidth product r l = 8 w 2mhz symbol parameter min. typ. max. unit i cc supply current no input signal, no load 58ma i standby standby current 1) no input signal, vstdby = g nd , rl = 8 w 1. standby mode is actived when vstdby is tied to gnd 10 1000 na voo output offset voltage no input signal, rl = 8 w 520mv po output power thd = 1% max, f = 1khz, rl = 8 w 180 mw thd + n total harmonic distortion + noise po = 200mw rms, gv = 2, 20hz < f < 20khz, rl = 8 w 0.15 % psrr power supply rejection ratio 2) f = 217hz, rl = 8 w, rfeed = 22k w, vripple = 100mv rms 2. dynamic measurements - 20*log(rms(vout)/rms(vripple)). vripple is the surimposed sinus signal to vcc @ f = 217hz 77 db f m phase margin at unity gain r l = 8 w , c l = 500pf 70 degrees gm gain margin r l = 8 w , c l = 500pf 20 db gbp gain bandwidth product r l = 8 w 2mhz ts4890 5/32 remarks 1. all measurements, except psrr measurements, are made with a supply bypass capacitor cs = 100f. 1. external resistors are not needed for having better stability when supply @ vcc down to 3v. the quiescent current still remains the same. 2. the standby response time is about 1s. components functional description rin inverting input resistor which sets the closed loop gain in conjunction with rfeed. this resistor also forms a high pass filter with cin (fc = 1 / (2 x pi x rin x cin)) cin input coupling capacitor which blocks the dc voltage at the amplifier input terminal rfeed feed back resistor which sets the closed loop gain in conjunction with rin cs supply bypass capacitor which provides power supply filtering cb bypass pin capacitor which provides half supply filtering cfeed low pass filter capacitor allowing to cut the high frequency (low pass filter cut-off frequency 1 / (2 x pi x rfeed x cfeed)) rstb pull-down resistor which fixes the right supply level on the standby pin gv closed loop gain in btl configuration = 2 x (rfeed / rin) ts4890 6/32 fig. 1 : open loop frequency response fig. 3 : open loop frequency response fig. 5 : open loop frequency response fig. 2 : open loop frequency response fig. 4 : open loop frequency response fig. 6 : open loop frequency response 0.3 1 10 100 1000 10000 -40 -20 0 20 40 60 -220 -200 -180 -160 -140 -120 -100 -80 -60 -40 -20 0 vcc = 5v rl = 8 w tamb = 25 c gain (db) frequency (khz) gain phase phase (deg) 0.3 1 10 100 1000 10000 -40 -20 0 20 40 60 80 -240 -220 -200 -180 -160 -140 -120 -100 -80 -60 -40 -20 0 gain (db) frequency (khz) vcc = 3.3v rl = 8 w tamb = 25 c gain phase phase (deg) 0.3 1 10 100 1000 10000 -40 -20 0 20 40 60 80 -240 -220 -200 -180 -160 -140 -120 -100 -80 -60 -40 -20 0 gain (db) frequency (khz) vcc = 2.6v rl = 8 w tamb = 25 c gain phase phase (deg) 0.3 1 10 100 1000 10000 -40 -20 0 20 40 60 -220 -200 -180 -160 -140 -120 -100 -80 -60 -40 -20 0 gain (db) frequency (khz) vcc = 5v zl = 8 w + 560pf tamb = 25 c gain phase phase (deg) 0.3 1 10 100 1000 10000 -40 -20 0 20 40 60 80 -240 -220 -200 -180 -160 -140 -120 -100 -80 -60 -40 -20 0 gain (db) frequency (khz) vcc = 3.3v zl = 8 w + 560pf tamb = 25 c gain phase phase (deg) 0.3 1 10 100 1000 10000 -40 -20 0 20 40 60 80 -240 -220 -200 -180 -160 -140 -120 -100 -80 -60 -40 -20 0 gain (db) frequency (khz) vcc = 2.6v zl = 8 w + 560pf tamb = 25 c gain phase phase (deg) ts4890 7/32 fig. 7 : open loop frequency response fig. 9 : open loop frequency response fig. 11 : open loop frequency response fig. 8 : open loop frequency response fig. 10 : open loop frequency response fig. 12 : open loop frequency response 0.3 1 10 100 1000 10000 -40 -20 0 20 40 60 80 -240 -220 -200 -180 -160 -140 -120 -100 -80 -60 -40 -20 0 gain (db) frequency (khz) vcc = 2.2v rl = 8 w tamb = 25 c gain phase phase (deg) 0.3 1 10 100 1000 10000 -40 -20 0 20 40 60 80 100 -220 -200 -180 -160 -140 -120 -100 -80 gain (db) frequency (khz) vcc = 5v cl = 560pf tamb = 25 c gain phase phase (deg) 0.3 1 10 100 1000 10000 -40 -20 0 20 40 60 80 100 -240 -220 -200 -180 -160 -140 -120 -100 -80 gain (db) frequency (khz) vcc = 2.6v cl = 560pf tamb = 25 c gain phase phase (deg) 0.3 1 10 100 1000 10000 -40 -20 0 20 40 60 80 -240 -220 -200 -180 -160 -140 -120 -100 -80 -60 -40 -20 0 gain (db) frequency (khz) vcc = 2.2v rl = 8 w , + 560pf tamb = 25 c gain phase phase (deg) 0.3 1 10 100 1000 10000 -40 -20 0 20 40 60 80 100 -240 -220 -200 -180 -160 -140 -120 -100 -80 gain (db) frequency (khz) vcc = 3.3v cl = 560pf tamb = 25 c gain phase phase (deg) 0.3 1 10 100 1000 10000 -40 -20 0 20 40 60 80 100 -240 -220 -200 -180 -160 -140 -120 -100 -80 gain (db) frequency (khz) vcc = 2.2v cl = 560pf tamb = 25 c gain phase phase (deg) ts4890 8/32 fig. 13 : power supply rejection ratio (psrr) vs power supply fig. 15 : power supply rejection ratio (psrr) vs bypass capacitor fig. 17 : power supply rejection ratio (psrr) vs feedback resistor fig. 14 : power supply rejection ratio (psrr) vs feedback capacitor fig. 16 : power supply rejection ratio (psrr) vs input capacitor fig. 18 : pout @ thd + n = 1% vs supply voltage vs rl 10 100 1000 10000 100000 -80 -70 -60 -50 -40 -30 vcc = 5v to 2.2v cb = 1 m f & 0.1 m f vripple = 200mvrms rfeed = 22k w input = floating rl = 8 w tamb = 25 c psrr (db) frequency (hz) 10 100 1000 10000 100000 -80 -70 -60 -50 -40 -30 -20 -10 cb=47 m f cb=100 m f cb=10 m f cb=1 m f vcc = 5 to 2.2v rfeed = 22k rin = 22k, cin = 1 m f rg = 100 w , rl = 8 w tamb = 25 c psrr (db) frequency (hz) 10 100 1000 10000 100000 -80 -70 -60 -50 -40 -30 -20 -10 rfeed=22k w rfeed=10k w rfeed=47k w rfeed=110k w vcc = 5 to 2.2v cb = 1 m f & 0.1 m f vripple = 200mvrms input = floating rl = 8 w tamb = 25 c psrr (db) frequency (hz) 10 100 1000 10000 100000 -80 -70 -60 -50 -40 -30 -20 -10 cfeed=680pf cfeed=330pf cfeed=150pf cfeed=0 vcc = 5 to 2.2v cb = 1 m f & 0.1 m f rfeed = 22k w vripple = 200mvrms input = floating rl = 8 w tamb = 25 c psrr (db) frequency (hz) 10 100 1000 10000 100000 -60 -50 -40 -30 -20 -10 cin=22nf cin=100nf cin=220nf cin=330nf cin=1 m f vcc = 5 to 2.2v rfeed = 22k, rin = 22k cb = 1 m f rg = 100 w , rl = 8 w tamb = 25 c psrr (db) frequency (hz) 2.5 3.0 3.5 4.0 4.5 5.0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 32 w 16 w 4 w 6 w gv = 2 & 10 cb = 1 m f f = 1khz bw < 125khz tamb = 25 c 8 w output power @ 1% thd + n (w) vcc (v) ts4890 9/32 fig. 19 : pout @ thd + n = 10% vs supply voltage vs rl fig. 21 : power dissipation vs pout fig. 23 : power dissipation vs pout fig. 20 : power dissipation vs pout fig. 22 : power dissipation vs pout fig. 24 : power derating curves 2.5 3.0 3.5 4.0 4.5 5.0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 4 w 6 w 8 w 16 w 32 w gv = 2 & 10 cb = 1 m f f = 1khz bw < 125khz tamb = 25 c output power @ 10% thd + n (w) vcc (v) 0.0 0.2 0.4 0.6 0.8 0.0 0.1 0.2 0.3 0.4 0.5 0.6 rl=4 w rl=8 w vcc=3.3v f=1khz thd+n<1% rl=16 w power dissipation (w) output power (w) 0.0 0.1 0.2 0.3 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 vcc=2.6v f=1khz thd+n<1% rl=16 w rl=8 w rl=4 w power dissipation (w) output power (w) 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 rl=16 w rl=8 w vcc=5v f=1khz thd+n<1% rl=4 w power dissipation (w) output power (w) 0.0 0.1 0.2 0.3 0.4 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 rl=4 w rl=8 w vcc=2.6v f=1khz thd+n<1% rl=16 w power dissipation (w) output power (w) 0 25 50 75 100 125 150 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 so8 miniso8 qfn8 power dissipation (w) ambiant temperature (c) ts4890 10/32 fig. 25 : thd + n vs output power fig. 27 : thd + n vs output power fig. 29 : thd + n vs output power fig. 26 : thd + n vs output power fig. 28 : thd + n vs output power fig. 30 : thd + n vs output power 1e-3 0.01 0.1 1 0.1 1 10 rl = 4 w vcc = 5v gv = 2 cb = cin = 1 m f bw < 125khz tamb = 25 c 20khz 20hz, 1khz thd + n (%) output power (w) 1e-3 0.01 0.1 1 0.1 1 10 rl = 4 w , vcc = 3.3v gv = 2 cb = cin = 1 m f bw < 125khz tamb = 25 c 20khz 20hz, 1khz thd + n (%) output power (w) 1e-3 0.01 0.1 0.1 1 10 rl = 4 w , vcc = 2.6v gv = 2 cb = cin = 1 m f bw < 125khz tamb = 25 c 20khz 20hz, 1khz thd + n (%) output power (w) 1e-3 0.01 0.1 1 0.1 1 10 rl = 4 w , vcc = 5v gv = 10 cb = cin = 1 m f bw < 125khz, tamb = 25 c 20khz 20hz 1khz thd + n (%) output power (w) 1e-3 0.01 0.1 1 0.1 1 10 rl = 4 w , vcc = 3.3v gv = 10 cb = cin = 1 m f bw < 125khz tamb = 25 c 20khz 20hz 1khz thd + n (%) output power (w) 1e-3 0.01 0.1 0.1 1 10 rl = 4 w , vcc = 2.6v gv = 10 cb = cin = 1 m f bw < 125khz tamb = 25 c 20khz 20hz 1khz thd + n (%) output power (w) ts4890 11/32 fig. 31 : thd + n vs output power fig. 33 : thd + n vs output power fig. 35 : thd + n vs output power fig. 32 : thd + n vs output power fig. 34 : thd + n vs output power fig. 36 : thd + n vs output power 1e-3 0.01 0.1 0.1 1 10 rl = 4 w , vcc = 2.2v gv = 2 cb = cin = 1 m f bw < 125khz tamb = 25 c 20khz 20hz, 1khz thd + n (%) output power (w) 1e-3 0.01 0.1 1 0.1 1 10 rl = 8 w vcc = 5v gv = 2 cb = cin = 1 m f bw < 125khz tamb = 25 c 20khz 20hz, 1khz thd + n (%) output power (w) 1e-3 0.01 0.1 1 0.1 1 10 rl = 8 w , vcc = 3.3v gv = 2 cb = cin = 1 m f bw < 125khz tamb = 25 c 20khz 20hz, 1khz thd + n (%) output power (w) 1e-3 0.01 0.1 0.1 1 10 rl = 4 w , vcc = 2.2v gv = 10 cb = cin = 1 m f bw < 125khz tamb = 25 c 20khz 20hz 1khz thd + n (%) output power (w) 1e-3 0.01 0.1 1 0.1 1 10 rl = 8 w vcc = 5v gv = 10 cb = cin = 1 m f bw < 125khz tamb = 25 c 20khz 20hz 1khz thd + n (%) output power (w) 1e-3 0.01 0.1 1 0.1 1 10 rl = 8 w , vcc = 3.3v gv = 10 cb = cin = 1 m f bw < 125khz tamb = 25 c 20khz 20hz 1khz thd + n (%) output power (w) ts4890 12/32 fig. 37 : thd + n vs output power fig. 39 : thd + n vs output power fig. 41 : thd + n vs output power fig. 38 : thd + n vs output power fig. 40 : thd + n vs output power fig. 42 : thd + n vs output power 1e-3 0.01 0.1 0.1 1 10 rl = 8 w , vcc = 2.6v gv = 2 cb = cin = 1 m f bw < 125khz tamb = 25 c 20khz 20hz, 1khz thd + n (%) output power (w) 1e-3 0.01 0.1 0.1 1 10 rl = 8 w , vcc = 2.2v gv = 2 cb = cin = 1 m f bw < 125khz tamb = 25 c 20hz 20khz 1khz thd + n (%) output power (w) 1e-3 0.01 0.1 1 0.1 1 10 rl = 8 w vcc = 5v gv = 2 cb = 0.1 m f, cin = 1 m f bw < 125khz tamb = 25 c 20khz 20hz 1khz thd + n (%) output power (w) 1e-3 0.01 0.1 0.1 1 10 rl = 8 w , vcc = 2.6v gv = 10 cb = cin = 1 m f bw < 125khz tamb = 25 c 20khz 20hz 1khz thd + n (%) output power (w) 1e-3 0.01 0.1 0.1 1 10 rl = 8 w , vcc = 2.2v gv = 10 cb = cin = 1 m f bw < 125khz tamb = 25 c 20khz 20hz 1khz thd + n (%) output power (w) 1e-3 0.01 0.1 1 0.1 1 10 rl = 8 w , vcc = 5v, gv = 10 cb = 0.1 m f, cin = 1 m f bw < 125khz, tamb = 25 c 20khz 20hz 1khz thd + n (%) output power (w) ts4890 13/32 fig. 43 : thd + n vs output power fig. 45 : thd + n vs output power fig. 47 : thd + n vs output power fig. 44 : thd + n vs output power fig. 46 : thd + n vs output power fig. 48 : thd + n vs output power 1e-3 0.01 0.1 1 0.1 1 10 rl = 8 w , vcc = 3.3v gv = 2 cb = 0.1 m f, cin = 1 m f bw < 125khz tamb = 25 c 20khz 20hz 1khz thd + n (%) output power (w) 1e-3 0.01 0.1 0.1 1 10 rl = 8 w , vcc = 2.6v gv = 2 cb = 0.1 m f, cin = 1 m f bw < 125khz tamb = 25 c 20khz 20hz 1khz thd + n (%) output power (w) 1e-3 0.01 0.1 0.1 1 10 rl = 8 w , vcc = 2.2v gv = 2 cb = cin = 1 m f bw < 125khz tamb = 25 c 20khz 20hz 1khz thd + n (%) output power (w) 1e-3 0.01 0.1 1 0.1 1 10 rl = 8 w , vcc = 3.3v, gv = 10 cb = 0.1 m f, cin = 1 m f bw < 125khz, tamb = 25 c 20khz 20hz 1khz thd + n (%) output power (w) 1e-3 0.01 0.1 0.1 1 10 rl = 8 w , vcc = 2.6v, gv = 10 cb = 0.1 m f, cin = 1 m f bw < 125khz, tamb = 25 c 20khz 20hz 1khz thd + n (%) output power (w) 1e-3 0.01 0.1 0.1 1 10 rl = 8 w , vcc = 2.2v, gv = 10 cb = 0.1 m f, cin = 1 m f bw < 125khz, tamb = 2 5 c 20khz 20hz 1khz thd + n (%) output power (w) ts4890 14/32 fig. 49 : thd + n vs output power fig. 51 : thd + n vs output power fig. 53 : thd + n vs output power fig. 50 : thd + n vs output power fig. 52 : thd + n vs output power fig. 54 : thd + n vs output power 1e-3 0.01 0.1 1 0.01 0.1 1 10 rl = 16 w , vcc = 5v gv = 2 cb = cin = 1 m f bw < 125khz tamb = 25 c 20khz 20hz, 1khz thd + n (%) output power (w) 1e-3 0.01 0.1 0.01 0.1 1 10 rl = 16 w , vcc = 3.3v gv = 2 cb = cin = 1 m f bw < 125khz tamb = 25 c 20khz 20hz, 1khz thd + n (%) output power (w) 1e-3 0.01 0.1 0.01 0.1 1 10 rl = 16 w vcc = 2.6v gv = 2 cb = cin = 1 m f bw < 125khz tamb = 25 c 20khz 20hz, 1khz thd + n (%) output power (w) 1e-3 0.01 0.1 1 0.01 0.1 1 10 rl = 16 w , vcc = 5v gv = 10 cb = cin = 1 m f bw < 125khz tamb = 25 c 20khz 20hz 1khz thd + n (%) output power (w) 1e-3 0.01 0.1 0.01 0.1 1 10 rl = 16 w vcc = 3.3v gv = 10 cb = cin = 1 m f bw < 125khz tamb = 25 c 20khz 20hz 1khz thd + n (%) output power (w) 1e-3 0.01 0.1 0.01 0.1 1 10 rl = 16 w vcc = 2.6v gv = 10 cb = cin = 1 m f bw < 125khz tamb = 25 c 20khz 20hz 1khz thd + n (%) output power (w) ts4890 15/32 fig. 55 : thd + n vs output power fig. 57 : thd + n vs frequency fig. 59 : thd + n vs frequency fig. 56 : thd + n vs output power fig. 58 : thd + n vs frequency fig. 60 : thd + n vs frequency 1e-3 0.01 0.1 0.01 0.1 1 10 rl = 16 w vcc = 2.2v gv = 2 cb = cin = 1 m f bw < 125khz tamb = 25 c 20hz 20khz 1khz thd + n (%) output power (w) 20 100 1000 10000 0.1 1 pout = 600mw pout = 1.2w rl = 4 w , vcc = 5v gv = 2 cb = 1f bw < 125khz tamb = 25c thd + n (%) frequency (hz) 20 100 1000 10000 0.1 1 pout = 270mw pout = 540mw rl = 4 w , vcc = 3.3v gv = 2 cb = 1f bw < 125khz tamb = 25c thd + n (%) frequency (hz) 1e-3 0.01 0.1 0.01 0.1 1 10 rl = 16 w vcc = 2.2v gv = 10, cb = cin = 1 m f bw < 125khz, tamb = 25 c 20khz 20hz 1khz thd + n (%) output power (w) 20 100 1000 10000 0.01 0.1 1 pout = 600mw pout = 1.2w rl = 4 w , vcc = 5v gv = 10 cb = 1f bw < 125khz tamb = 25c thd + n (%) frequency (hz) 20 100 1000 10000 0.1 1 pout = 270mw pout = 540mw rl = 4 w , vcc = 3.3v gv = 10 cb = 1f bw < 125khz tamb = 25c thd + n (%) frequency (hz) ts4890 16/32 fig. 61 : thd + n vs frequency fig. 63 : thd + n vs frequency fig. 65 : thd + n vs frequency fig. 62 : thd + n vs frequency fig. 64 : thd + n vs frequency fig. 66 : thd + n vs frequency 20 100 1000 10000 0.1 1 pout = 120mw pout = 240mw rl = 4 w , vcc = 2.6v gv = 2 cb = 1f bw < 125khz tamb = 25c thd + n (%) frequency (hz) 20 100 1000 10000 0.1 1 pout = 88mw pout = 175mw rl = 4 w , vcc = 2.2v gv = 2 cb = 1 m f bw < 125khz tamb = 25 c thd + n (%) frequency (hz) 20 100 1000 10000 0.1 1 cb = 0.1f cb = 1f rl = 8 w vcc = 5v gv = 2 pout = 900mw bw < 125khz tamb = 25c thd + n (%) frequency (hz) 20 100 1000 10000 0.1 1 pout = 240 & 120mw rl = 4 w , vcc = 2.6v gv = 10 cb = 1f bw < 125khz tamb = 25c thd + n (%) frequency (hz) 20 100 1000 10000 0.1 1 rl = 4 w , vcc = 2.2v gv = 10 cb = 1 m f bw < 125khz tamb = 25 c pout = 175mw pout = 88mw thd + n (%) frequency (hz) 20 100 1000 10000 0.1 1 cb = 0.1f cb = 1f rl = 8 w vcc = 5v gv = 2 pout = 450mw bw < 125khz tamb = 25c thd + n (%) frequency (hz) ts4890 17/32 fig. 67 : thd + n vs frequency fig. 69 : thd + n vs frequency fig. 71 : thd + n vs frequency fig. 68 : thd + n vs frequency fig. 70 : thd + n vs frequency fig. 72 : thd + n vs frequency 20 100 1000 10000 0.1 1 cb = 0.1f cb = 1f rl = 8 w , vcc = 5v gv = 10 pout = 900mw bw < 125khz tamb = 25c thd + n (%) frequency (hz) 20 100 1000 10000 0.1 1 cb = 0.1f cb = 1f rl = 8 w , vcc = 3.3v gv = 2 pout = 400mw bw < 125khz tamb = 25c thd + n (%) frequency (hz) 20 100 1000 10000 0.1 1 cb = 0.1f cb = 1f rl = 8 w , vcc = 3.3v gv = 10 pout = 400mw bw < 125khz tamb = 25c thd + n (%) frequency (hz) 20 100 1000 10000 0.1 1 cb = 0.1f cb = 1f rl = 8 w , vcc = 5v gv = 10 pout = 450mw bw < 125khz tamb = 25c thd + n (%) frequency (hz) 20 100 1000 10000 0.1 1 cb = 0.1f cb = 1f rl = 8 w , vcc = 3.3v gv = 2 pout = 200mw bw < 125khz tamb = 25c thd + n (%) frequency (hz) 20 100 1000 10000 0.1 1 cb = 0.1f cb = 1f rl = 8 w , vcc = 3.3v gv = 10 pout = 200mw bw < 125khz tamb = 25c thd + n (%) frequency (hz) ts4890 18/32 fig. 73 : thd + n vs frequency fig. 75 : thd + n vs frequency fig. 77 : thd + n vs frequency fig. 74 : thd + n vs frequency fig. 76 : thd + n vs frequency fig. 78 : thd + n vs frequency 20 100 1000 10000 0.1 1 cb = 0.1f cb = 1f rl = 8 w , vcc = 2.6v gv = 2 pout = 220mw bw < 125khz tamb = 25c thd + n (%) frequency (hz) 20 100 1000 10000 0.1 1 cb = 0.1f cb = 1f rl = 8 w , vcc = 2.6v gv = 10 pout = 220mw bw < 125khz tamb = 25c thd + n (%) frequency (hz) 20 100 1000 10000 0.1 1 cb = 0.1 m f cb = 1 m f rl = 8 w , vcc = 2.2v gv = 2 pout = 150mw bw < 125khz tamb = 25 c thd + n (%) frequency (hz) 20 100 1000 10000 0.1 1 cb = 0.1f cb = 1f rl = 8 w , vcc = 2.6v gv = 2 pout = 110mw bw < 125khz tamb = 25c thd + n (%) frequency (hz) 20 100 1000 10000 0.1 1 cb = 0.1f cb = 1f rl = 8 w , vcc = 2.6v gv = 10 pout = 110mw bw < 125khz tamb = 25c thd + n (%) frequency (hz) 20 100 1000 10000 0.1 1 cb = 1 m f cb = 0.1 m f rl = 8 w , vcc = 2.2v gv = 2 pout = 75mw bw < 125khz tamb = 25 c thd + n (%) frequency (hz) ts4890 19/32 fig. 79 : thd + n vs frequency fig. 81 : thd + n vs frequency fig. 83 : thd + n vs frequency fig. 80 : thd + n vs frequency fig. 82 : thd + n vs frequency fig. 84 : thd + n vs frequency 20 100 1000 10000 0.1 1 rl = 8 w , vcc = 2.2v gv = 10 pout = 150mw bw < 125khz tamb = 25 c cb = 0.1 m f cb = 1 m f thd + n (%) frequency (hz) 20 100 1000 10000 0.01 0.1 1 pout = 310mw pout = 620mw rl = 16 w , vcc = 5v gv = 2, cb = 1f bw < 125khz tamb = 25c thd + n (%) frequency (hz) 20 100 1000 10000 0.01 0.1 1 pout = 135mw pout = 270mw rl = 16 w , vcc = 3.3v gv = 2, cb = 1f bw < 125khz tamb = 25c thd + n (%) frequency (hz) 20 100 1000 10000 0.1 1 cb = 1 m f cb = 0.1 m f rl = 8 w , vcc = 2.2v gv = 10 pout = 72mw bw < 125khz tamb = 25 c thd + n (%) frequency (hz) 20 100 1000 10000 0.01 0.1 1 pout = 310mw pout = 620mw rl = 16 w , vcc = 5v gv = 10, cb = 1f bw < 125khz tamb = 25c thd + n (%) frequency (hz) 20 100 1000 10000 0.1 1 pout = 135mw pout = 270mw rl = 16 w , vcc = 3.3v gv = 10 cb = 1f bw < 125khz tamb = 25c thd + n (%) frequency (hz) ts4890 20/32 fig. 85 : thd + n vs frequency fig. 87 : thd + n vs frequency fig. 89 : signal to noise ratio vs power supply with unweighted filter (20hz to 20khz) fig. 86 : thd + n vs frequency fig. 88 : thd + n vs frequency fig. 90 :signal to noise ratio vs power supply with unweighted filter (20hz to 20khz) 20 100 1000 10000 0.01 0.1 1 pout = 80mw pout = 160mw rl = 16 w , vcc = 2.6v gv = 10, cb = 1 m f bw < 125khz tamb = 25 c thd + n (%) frequency (hz) 20 100 1000 10000 0.01 0.1 1 rl = 16 w , vcc = 2.2v gv = 2, cb = 1 m f bw < 125khz tamb = 25 c pout = 50 & 100mw thd + n (%) frequency (hz) 2.5 3.0 3.5 4.0 4.5 5.0 50 60 70 80 90 100 rl=8 w rl=4 w 2.2 rl=16 w gv = 2 cb = cin = 1 m f thd+n < 0.4% tamb = 25 c snr (db) vcc (v) 20 100 1000 10000 0.01 0.1 1 rl = 16 w , vcc = 2.6v gv = 2, cb = 1 m f bw < 125khz tamb = 25 c pout = 80mw pout = 160mw thd + n (%) frequency (hz) 20 100 1000 10000 0.01 0.1 1 rl = 16 w , vcc = 2.2v gv = 10, cb = 1 m f bw < 125khz tamb = 25 c pout = 50mw pout = 100mw thd + n (%) frequency (hz) 2.5 3.0 3.5 4.0 4.5 5.0 50 60 70 80 90 rl=8 w rl=4 w rl=16 w gv = 10 cb = cin = 1 m f thd+n < 0.4% tamb = 25 c 2.2 snr (db) vcc (v) ts4890 21/32 fig. 91 : signal to noise ratio vs power supply with weighted filter type a fig. 93 : frequency response gain vs cin, & cfeed fig. 95 : current consumption vs standby voltage @ vcc = 5v fig. 92 : signal to noise ratio vs power supply with weighted filter type a fig. 94 : current consumption vs power supply voltage (no load) fig. 96 : current consumption vs standby voltage @ vcc = 3.3v 2.5 3.0 3.5 4.0 4.5 5.0 60 70 80 90 100 110 gv = 2 cb = cin = 1 m f thd+n < 0.4% tamb = 25 c rl=16 w rl=8 w rl=4 w 2.2 snr (db) vcc (v) 10 100 1000 10000 -25 -20 -15 -10 -5 0 5 10 rin = rfeed = 22k w tamb = 25 c cfeed = 2.2nf cfeed = 680pf cfeed = 330pf cin = 470nf cin = 82nf cin = 22nf gain (db) frequency (hz) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 0 1 2 3 4 5 6 7 vcc = 5v tamb = 25 c icc (ma) vstandby (v) 2.5 3.0 3.5 4.0 4.5 5.0 60 70 80 90 100 rl=8 w rl=4 w rl=16 w gv = 10 cb = cin = 1 m f thd+n < 0.4% tamb = 25 c 2.2 snr (db) vcc (v) 012345 0 1 2 3 4 5 6 7 vstandby = vcc tamb = 25 c icc (ma) vcc (v) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 0 1 2 3 4 5 6 vcc = 3.3v tamb = 25 c icc (ma) vstandby (v) ts4890 22/32 fig. 97 : current consumption vs standby voltage @ vcc = 2.6v fig. 99 : clipping voltage vs power supply voltage and load resistor fig. 101 : vout1+vout2 unweighted noise floor fig. 98 : current consumption vs standby voltage @ vcc = 2.2v fig. 100 :clipping voltage vs power supply voltage and load resistor fig. 102 : vout1+vout2 a-weighted noise floor 0.0 0.5 1.0 1.5 2.0 2.5 0 1 2 3 4 5 6 vcc = 2.6v tamb = 25 c icc (ma) vstandby (v) 2.5 3.0 3.5 4.0 4.5 5.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 rl = 16 w rl = 4 w 2.2 tamb = 25 c rl = 8 w vout1 & vout2 clipping voltage high side (v) power supply voltage (v) 100 1000 10000 0 20 40 60 80 100 120 av = 10 av = 2 standby mode vcc = 2.2v to 5v, tamb = 25 c cb = cin = 1 f input grounded bw = 20hz to 20khz (unweighted) 20 output noise voltage ( v) frequency (hz) 0.0 0.5 1.0 1.5 2.0 0 1 2 3 4 5 vcc = 2.2v tamb = 25 c icc (ma) vstandby (v) 2.5 3.0 3.5 4.0 4.5 5.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 rl = 16 w rl = 4 w rl = 8 w tamb = 25 c 2.2 vout1 & vout2 clipping voltage low side (v) power supply voltage (v) 100 1000 10000 0 20 40 60 80 100 120 av = 10 av = 2 standby mode vcc = 2.2v to 5v, tamb = 25 c cb = cin = 1 f input grounded bw = 20hz to 20khz (a-weighted) 20 output noise voltage ( v) frequency (hz) ts4890 23/32 application information fig. 103 : demoboard schematic fig. 104 : so8 & miniso8 demoboard components side 4 3 2 1 5 8 vin- vin+ - + - + bypass standby bias 6 vout1 vout2 av=-1 ts4890 vcc gnd vcc 7 + 470 s6 out1 s3 gnd s4 gnd s7 c10 + 470 c9 c7 100n c6 100 + r1 r2 c2 c1 c8 c12 1u c11 s8 standby d1 pw on r7 1.5k vcc s5 positive input mode r6 pos input p2 neg. input p1 c4 r5 r4 c5 r3 c3 gnd s2 vcc s1 vcc r8 10k + + ts4890 24/32 fig. 105 : so8 & miniso8 demoboard top solder layer fig. 106 : so8 & miniso8 demoboard bottom solder layer n btl configuration principle the ts4890 is a monolithic power amplifier with a btl output type. btl (bridge tied load) means that each end of the load are connected to two single ended output amplifiers. thus, we have : single ended output 1 = vout1 = vout (v) single ended output 2 = vout2 = -vout (v) and vout1 - vout2 = 2vout (v) the output power is : for the same power supply voltage, the output power in btl configuration is four times higher than the output power in single ended configuration. n gain in typical application schematic (cf. page 1) in flat region (no effect of cin), the output voltage of the first stage is : for the second stage : vout2 = -vout1 (v) the differential output voltage is the differential gain named gain (gv) for more convenient usage is : remark : vout2 is in phase with vin and vout1 is 180 phased with vin. it means that the positive terminal of the loudspeaker should be connected to vout2 and the negative to vout1. n low and high frequency response in low frequency region, the effect of cin starts. cin with rin forms a high pass filter with a -3db cut off frequency . in high frequency region, you can limit the bandwidth by adding a capacitor (cfeed) in parallel on rfeed. its form a low pass filter with a -3db cut off frequency . ) w ( r ) vout 2 ( pout l 2 rms = ) v ( rin rfeed vin 1 vout - = ) v ( rin rfeed vin 2 1 vout 2 vout = - rin rfeed 2 vin 1 vout 2 vout gv = - = (hz) rincin 2 1 f cl p = ) hz ( cfeed rfeed 2 1 f ch p = ts4890 25/32 n power dissipation and efficiency hypothesis : ? voltage and current in the load are sinusoidal (vout and iout) ? supply voltage is a pure dc source (vcc) regarding the load we have : and and then, the average current delivered by the supply voltage is the power delivered by the supply voltage is psupply = vcc icc avg (w) then, the power dissipated by the amplifier is pdiss = psupply - pout (w) and the maximum value is obtained when and its value is remark : this maximum value is only depending on power supply voltage and load values. the efficiency is the ratio between the output power and the power supply the maximum theoretical value is reached when vpeak = vcc, so n decoupling of the circuit two capacitors are needed to bypass properly the ts4890. a power supply bypass capacitor cs and a bias voltage bypass capacitor cb. cs has especially an influence on the thd+n in high frequency (above 7khz) and indirectly on the power supply disturbances. with 100f, you can expect similar thd+n performances like shown in the datasheet. if cs is lower than 100f, in high frequency increase thd+n and disturbances on the power supply rail are less filtered. to the contrary, if cs is higher than 100f, those disturbances on the power supply rail are more filtered. cb has an influence on thd+n in lower frequency, but its function is critical on the final result of psrr with input grounded in lower frequency. if cb is lower than 1f, thd+n increase in lower frequency (see thd+n vs frequency curves) and the psrr worsens up if cb is higher than 1f, the benefit on thd+n in lower frequency is small but the benefit on psrr is substantial (see psrr vs. cb curves). note that cin has a non-negligible effect on psrr in lower frequency. lower is its value, higher is the psrr (see fig. 13). n pop and click performance in order to have the best performances with the pop and click circuitry, the formula below must be follow : with and ) v ( t sin v v peak out w = ) a ( r v i l out out = ) w ( r 2 v p l 2 peak out = ) a ( r v 2 icc l peak avg p = ) w ( p p r vcc 2 2 pdiss out out l - p = 0 p pdiss out = ? ? ) w ( r vcc 2 max pdiss l 2 2 p = vcc 4 v ply sup p p peak out p = = h % 5 . 78 4 = p b in t t ) s ( c ) r r ( in feed in in + = t ) s ( c k 50 b b w = t ts4890 26/32 n power amplifier design examples given : ? load impedance : 8 w ? output power @ 1% thd+n : 0.5w ? input impedance : 10k w min. ? input voltage peak to peak : 1vpp ? bandwidth frequency : 20hz to 20khz (0, -3db) ? thd+n in 20hz to 20khz < 0.5% @pout=0.45w ? ambient temperature max = 50c ? so8 package first of all, we must calculate the minimum power supply voltage to obtain 0.5w into 8 w . see curves in fig. 15, we can read 3.5v. thus, the power supply voltage value min. will be 3.5v. following the maximum power dissipation equation : with 3.5v we have pdissmax=0.31w. refer to power derating curves (fig. 24), with 0.31w the maximum ambient temperature will be 100c. this last value could be higher if you follow the example layout shows on the demoboard (better dissipation). the gain of the amplifier in flat region will be : we have rin > 10k w . let's take rin = 10k w , then rfeed = 28.25k w . we could use for rfeed = 30k w in normalized value and the gain will be gv = 6. in lower frequency we want 20 hz (-3db cut off frequency). then so, we could use for cin a 1f capacitor value that gives 16hz. in higher frequency we want 20khz (-3db cut off frequency). the gain bandwidth product of the ts4890 is 2mhz typical and doesn't change when the amplifier delivers power into the load. the first amplifier has a gain of and the theoretical value of the -3db cut of higher frequency is 2mhz/3 = 660khz. we can keep this value or limiting the bandwidth by adding a capacitor cfeed, in parallel on rfeed. then so, we could use for cfeed a 220pf capacitor value that gives 24khz. now, we can choose the value of cb with the constraint thd+n in 20hz to 20khz < 0.5% @ pout=0.45w. if you refer to the closest thd+n vs frequency measurement : fig. 71 (vcc=3.3v, gv=10), with cb = 1f, the thd+n vs frequency is always below 0.4%. as the behaviour is the same with vcc = 5v (fig. 67), vcc = 2.6v (fig. 67). as the gain for these measurements is higher (worst case), we can consider with cb = 1f, vcc = 3.5v and gv = 6, that the thd+n in 20hz to 20khz range with pout = 0.45w will be lower than 0.4%. in the following tables, you could find three another examples with values required for the demoboard. remark : components with (*) marking are optional. application n1 : 20hz to 20khz bandwidth and 6db gain btl power amplifier. components : ) w ( r vcc 2 max pdiss l 2 2 p = 65 . 5 v p r 2 2 v v g inpp out l inpp outpp v = = = nf 795 f rin 2 1 c cl in = p = designator part type r1 22k / 0.125w r4 22k / 0.125w r6 short cicuit r7* (vcc-vf_led)/if_led r8 10k / 0.125w c5 470nf c6 100f 3 rin rfeed = pf 265 f r 2 1 c ch feed feed = p = ts4890 27/32 application n2 : 20hz to 20khz bandwidth and 20db gain btl power amplifier. components : application n3 : 50hz to 10khz bandwidth and 10db gain btl power amplifier. components : application n4 : differential inputs btl power amplifier. in this configuration, we need to place these components : r1, r4, r5, r6, r7, c4, c5, c12. we have also : r4 = r5, r1 = r6, c4 = c5. the gain of the amplifier is: for vcc=5v, a 20hz to 20khz bandwidth and 20db gain btl power amplifier you could follow the bill of material below. c7 100nf c9 short circuit c10 short circuit c12 1f s1, s2, s6, s7 2mm insulated plug 10.16mm pitch s8 3 pts connector 2.54mm pitch p1 pcb phono jack d1* led 3mm u1 ts4890id or ts4890is designator part type r1 110k / 0.125w r4 22k / 0.125w r6 short cicuit r7* (vcc-vf_led)/if_led r8 10k / 0.125w c5 470nf c6 100f c7 100nf c9 short circuit c10 short circuit c12 1f s1, s2, s6, s7 2mm insulated plug 10.16mm pitch s8 3 pts connector 2.54mm pitch p1 pcb phono jack d1* led 3mm u1 ts4890id or ts4890is designator part type designator part type r1 33k / 0.125w r2 short circuit r4 22k / 0.125w r6 short cicuit r7* (vcc-vf_led)/if_led r8 10k / 0.125w c2 470pf c5 150nf c6 100f c7 100nf c9 short circuit c10 short circuit c12 1f s1, s2, s6, s7 2mm insulated plug 10.16mm pitch s8 3 pts connector 2.54mm pitch p1 pcb phono jack d1* led 3mm u1 ts4890id or ts4890is g vdiff = 2 r1 r4 ------- - ts4890 28/32 components : designator part type r1 110k / 0.125w r4 22k / 0.125w r5 22k / 0.125w r6 110k / 0.125w r7* (vcc-vf_led)/if_led r8 10k / 0.125w c4 470nf c5 470nf c6 100f c7 100nf c9 short circuit c10 short circuit c12 1f d1* led 3mm s1, s2, s6, s7 2mm insulated plug 10.16mm pitch s8 3 pts connector 2.54mm pitch p1, p2 pcb phono jack u1 ts4890id or ts4890is ts4890 29/32 n note on how to use the psrr curves (page 8) we have finished a design and we have chosen for the components : ? rin=rfeed=22k w ? cin=100nf ? cb=1f now, on fig. 16, we can see the psrr (input grounded) vs frequency curves. at 217hz, we have a psrr value of -36db. in reality we want a value about -70db. so, we need a gain of 34db ! now, on fig. 15 we can see the effect of cb on the psrr (input grounded) vs. frequency. with cb=100f, we can reach the -70db value. the process to obtain the final curve (cb=100f, cin=100nf, rin=rfeed=22k w ) is a simple transfer point by point on each frequency of the curve on fig. 16 to the curve on fig. 15. the measurement result is shown on the next figure. fig. 107 : psrr changes with cb n note on psrr measurement what is the psrr ? the psrr is the power supply rejection ratio. it's a kind of svr in a determined frequency range. the psrr of a device, is the ratio between a power supply disturbance and the result on the output. we can say that the psrr is the ability of a device to minimize the impact of power supply disturbances to the output. how do we measure the psrr ? fig. 108 : psrr measurement schematic n principle of operation ? we fixed the dc voltage supply (vcc) ? we fixed the ac sinusoidal ripple voltage (vripple) ? no bypass capacitor cs is used the psrr value for each frequency is : remark : the measure of the rms voltage is not a rms selective measure but a full range (2 hz to 125 khz) rms measure. it means that we measure the effective rms signal + the noise. 10 100 1000 10000 100000 -70 -60 -50 -40 -30 cin=100nf cb=100 m f cin=100nf cb=1 m f vcc = 5 & 2.2v rfeed = 22k, rin = 22k rg = 100 w , rl = 8 w tamb = 25 c psrr (db) frequency (hz) vripple vcc rin cin rg 100 ohms cb rfeed 4 3 2 1 5 8 vin- vin+ - + - + bypass standby bias 6 vout1 vout2 av=-1 ts4890 vs- vs+ rl vcc gnd 7 ? ? - = - + ) vs vs ( rms ) v ( rms log 20 ) db ( psrr ripple 10 ts4890 30/32 package mechanical data dim. mm. inch min. typ max. min. typ. max. a 1.35 1.75 0.053 0.069 a1 0.10 0.25 0.04 0.010 a2 1.10 1.65 0.043 0.065 b 0.33 0.51 0.013 0.020 c 0.19 0.25 0.007 0.010 d 4.80 5.00 0.189 0.197 e 3.80 4.00 0.150 0.157 e 1.27 0.050 h 5.80 6.20 0.228 0.244 h 0.25 0.50 0.010 0.020 l 0.40 1.27 0.016 0.050 k ? (max.) ddd 0.1 0.04 so-8 mechanical data 0016023/c 8 ts4890 31/32 package mechanical data ts4890 32/32 package mechanical data information furnished is believed to be accurate and reliable. however, stmicroelectronics assumes no responsibility for th e consequences of use of such information nor for any infringement of patents or other rights of third parties which may result f ro m its use. no license is granted by implication or otherwise under any patent or patent rights of stmicroelectronics. specificati on s mentioned in this publication are subject to change without notice. this publication supersedes and replaces all informatio n previously supplied. stmicroelectronics products are not authorized for use as critical components in life support devices o r systems without express written approval of stmicroelectronics. the st logo is a registered trademark of stmicroelectronics ? 2003 stmicroelectronics - all rights reserved stmicroelectronics group of companies australia - brazil - china - finland - france - germany - hong kong - india - italy - japan - malaysia - malta - morocco singapore - spain - sweden - switzerland - united kingdom |
Price & Availability of TS4890IQT
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |