Part Number Hot Search : 
2SB0789G PR1000 S3503 LTC1998C MTB25HBM MTB25HBM MAXQ6121 AK8181H
Product Description
Full Text Search
 

To Download AD8609 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  precision micropower, low noise cmos, rail-to-rail input/output operational amplifiers ad8603/ad8607/AD8609 rev. c information furnished by analog devices is believed to be accurate and reliable. however, no responsibility is assumed by analog devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. specifications subject to change without notice. no license is granted by implication or otherwise under any patent or patent rights of analog devices. trademarks and registered trademarks are the property of their respective owners. one technology way, p.o. box 9106, norwood, ma 02062-9106, u.s.a. tel: 781.329.4700 www.analog.com fax: 781.461.3113 ?2003C2008 analog devices, inc. all rights reserved. features low offset voltage: 50 v maximum low input bias current: 1 pa maximum single-supply operation: 1.8 v to 5 v low noise: 22 nv/hz micropower: 50 a maximum low distortion no phase reversal unity gain stable applications battery-powered instrumentation multipole filters sensors low power asic input or output amplifiers general description the ad8603/ad8607/AD8609 are si ngle/dual/quad micro- power rail-to-rail input and output amplifiers, respectively, that feature very low offset voltage as well as low input voltage and current noise. these amplifiers use a patented trimming technique that achieves superior precision without laser trimming. the parts are fully specified to operate from 1.8 v to 5.0 v single supply or from 0.9 v to 2.5 v dual supply. the combination of low offsets, low noise, very low input bias currents, and low power consumption makes the ad8603/ad8607/AD8609 especially useful in portable and loop-powered instrumentation. the ability to swing rail to rail at both the input and output enables designers to buffer cmos adcs, dacs, asics, and other wide output swing devices in low power, single-supply systems. the ad8603 is available in a tiny 5-lead tsot package. the ad8607 is available in 8-lead msop and 8-lead soic packages. the AD8609 is available in 14-lead tssop and 14-lead soic packages. pin configurations 04356-001 out 1 v? 2 +in 3 v+ 5 ?in 4 ad8603 top view (not to scale) figure 1. 5-lead tsot (uj suffix) 04356-002 out a 1 ?in a 2 +in a 3 v? 4 v+ 8 out b 7 ?in b 6 +in b 5 ad8607 top view (not to scale) figure 2. 8-lead msop (rm suffix) 04356-003 out a 1 ?in a 2 +in a 3 v? 4 v+ 8 out b 7 ?in b 6 +in b 5 ad8607 top view (not to scale) figure 3. 8-lead soic (r suffix) 04356-004 1 2 3 4 5 6 7 AD8609 ?in a +in a v+ out b ?in b +in b out a 14 13 12 11 10 9 8 ?in d +in d v? out c ?in c +in c out d top view (not to scale) figure 4. 14-lead tssop (ru suffix) out a 1 ?in a 2 +in a 3 v+ 4 out d 14 ?in d 13 +in d 12 v? 11 +in b 5 +in c 10 ?in b 6 ?in c 9 out b 7 out c 8 AD8609 top view (not to scale) 0 4356-005 figure 5. 14-lead soic (r suffix)
ad8603/ad8607/AD8609 rev. c | page 2 of 16 table of contents features .............................................................................................. 1 ? applications ....................................................................................... 1 ? general description ......................................................................... 1 ? pin configurations ........................................................................... 1 ? revision history ............................................................................... 2 ? specifications ..................................................................................... 3 ? electrical characteristics ............................................................. 3 ? absolute maximum ratings ............................................................ 5 ? esd caution .................................................................................. 5 ? typical performance characteristics ............................................. 6 ? applications ..................................................................................... 12 ? no phase reversal ...................................................................... 12 ? input overvoltage protection ................................................... 12 ? driving capacitive loads .......................................................... 12 ? proximity sensors ....................................................................... 13 ? composite amplifiers ................................................................ 13 ? battery-powered applications .................................................. 13 ? photodiodes ................................................................................ 13 ? outline dimensions ....................................................................... 14 ? ordering guide .......................................................................... 16 ? revision history 6/08rev. b to rev. c changes to table 1 ............................................................................ 3 changes to table 2 ............................................................................ 4 changes to figure 15 ........................................................................ 7 changes to figure 33 ...................................................................... 10 changes to figure 45 and figure 47 ............................................. 13 updated outline dimensions ....................................................... 14 changes to ordering guide .......................................................... 16 6/05rev. a to rev. b updated figure 49 .......................................................................... 15 changes to ordering guide .......................................................... 17 10/03rev. 0 to rev. a added ad8607 and AD8609 parts .................................. universal changes to specifications ................................................................ 3 changes to figure 35 ...................................................................... 10 added figure 41 .............................................................................. 11 8/03revision 0: initial version
ad8603/ad8607/AD8609 rev. c | page 3 of 16 specifications electrical characteristics v s = 5 v, v cm = v s /2, t a = 25c, unless otherwise noted. table 1. parameter symbol conditions min typ max unit input characteristics offset voltage v os v s = 3.3 v @ v cm = 0.5 v and 2.8 v 12 50 v ?0.3 v < v cm < +5.2 v 40 300 v ?40c < t a < +125c, ?0.3 v < v cm < +5.2 v 700 v offset voltage drift ?v os /?t ?40c < t a < +125c 1 4.5 v/c input bias current i b 0.2 1 pa ?40c < t a < +85c 50 pa ?40c < t a < +125c 500 pa input offset current i os 0.1 0.5 pa ?40c < t a < +85c 50 pa ?40c < t a < +125c 250 pa input voltage range ivr ?0.3 +5.2 v common-mode rejection ratio cmrr 0 v < v cm < 5 v 85 100 db ?40c < t a < +125c 80 db large signal voltage gain a vo r l = 10 k, 0.5 v < v o < 4.5 v ad8603 400 1000 v/mv ad8607/AD8609 250 450 v/mv input capacitance c diff 1.9 pf c cm 2.5 pf output characteristics output voltage high v oh i l = 1 ma 4.95 4.97 v ?40c to +125c 4.9 v i l = 10 ma 4.65 4.97 v ?40c to +125c 4.50 v output voltage low v ol i l = 1 ma 16 30 mv ?40c to +125c 50 mv i l = 10 ma 160 250 mv ?40c to +125c 330 mv short-circuit current i sc 70 ma closed-loop output impedance z out f = 10 khz, a v = 1 36 power supply power supply rejection ratio psrr 1.8 v < v s < 5 v 80 100 db supply current per amplifier i sy v o = 0 v 40 50 a ?40c ad8603/ad8607/AD8609 rev. c | page 4 of 16 v s = 1.8 v, v cm = v s /2, t a = 25c, unless otherwise noted. table 2. parameter symbol conditions min typ max unit input characteristics offset voltage v os v s = 3.3 v @ v cm = 0.5 v and 2.8 v 12 50 v ?0.3 v < v cm < +1.8 v 40 300 v ?40c < t a < +85c, ?0.3 v < v cm < +1.8 v 500 v ?40c < t a < +125c, ?0.3 v < v cm < +1.7 v 700 v offset voltage drift ?v os /?t ?40c < t a < +125c 1 4.5 v/c input bias current i b 0.2 1 pa ?40c < t a < +85c 50 pa ?40c < t a < +125c 500 pa input offset current i os 0.1 0.5 pa ?40c < t a < +85c 50 pa ?40c < t a < +125c 250 pa input voltage range ivr ?0.3 +1.8 v common-mode rejection ratio cmrr 0 v < v cm < 1.8 v 80 98 db ?40c < t a < +85c 70 db large signal voltage gain a vo r l = 10 k, 0.5 v < v o < 4.5 v ad8603 150 3000 v/mv ad8607/AD8609 100 2000 v/mv input capacitance c diff 2.1 pf c cm 3.8 pf output characteristics output voltage high v oh i l = 1 ma 1.65 1.72 v ?40c to +125c 1.6 v output voltage low v ol i l = 1 ma 38 60 mv ?40c to +125c 80 mv short-circuit current i sc 10 ma closed-loop output impedance z out f = 10 khz, a v = 1 36 power supply power supply rejection ratio psrr 1.8 v < v s < 5 v 80 100 db supply current per amplifier i sy v o = 0 v 40 50 a ?40c < t a < +85c 60 a dynamic performance slew rate sr r l = 10 k 0.1 v/s settling time 0.1% t s g = 1, 1 v step 9.2 s gain bandwidth product gbp r l = 100 k 385 khz r l = 10 k 316 khz phase margin ? o r l = 10 k, r l = 100 k 70 degrees noise performance peak-to-peak noise e n p-p 0.1 hz to 10 hz 2.3 3.5 v voltage noise density e n f = 1 khz 25 nv/hz f = 10 khz 22 nv/hz current noise density i n f = 1 khz 0.05 pa/hz channel separation c s f = 10 khz ?115 db f = 100 khz ?110 db
ad8603/ad8607/AD8609 rev. c | page 5 of 16 absolute maximum ratings absolute maximum ratings apply at 25c, unless otherwise noted. table 3. parameter rating supply voltage 6 v input voltage gnd to v s differential input voltage 6 v output short-circuit duration to gnd indefinite storage temperature range ?65c to +150c lead temperature (soldering, 60 sec) 300c operating temperature range ?40c to +125c junction temperature range ?65c to +150c stresses above those listed under absolute maximum ratings may cause permanent damage to the device. this is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. exposure to absolute maximum rating conditions for extended periods may affect device reliability. table 4. package characteristics package type ja 1 jc unit 5-lead tsot (uj) 207 61 c/w 8-lead msop (rm) 210 45 c/w 8-lead soic_n (r) 158 43 c/w 14-lead soic_n (r) 120 36 c/w 14-lead tssop (ru) 180 35 c/w 1 ja is specified for the wors t-case conditions, that is, ja is specified for a device soldered in a circuit bo ard for surface-mount packages. esd caution
ad8603/ad8607/AD8609 rev. c | page 6 of 16 typical performance characteristics v os (v) number of amplifiers ?210 0 400 800 1200 01 5 0 200 600 1000 ?150 ?30 30 90 210 270 ?90 1600 1400 ?270 1800 2000 2200 2400 2600 v s = 5v t a = 25c v cm = 0v to 5v 04356-006 figure 6. input offset voltage distribution tcvos (v/c) numbers of amplifiers 0 0 10 20 30 1.6 3.2 5 15 25 0.4 0.8 1.2 2.0 2.4 2.8 3.6 4.0 4.4 4.8 5.2 v s = 2.5v t a = ?40c to +125c v cm = 0v 04356-007 figure 7. input offset voltage drift distribution v cm (v) v os (v) 0 ?300 ?100 100 300 1.5 3.5 5.0 1.0 0.5 2.5 4.54.0 3.0 2.0 ?200 ?150 ?250 ?50 0 50 150 200 250 04356-008 v s = 5v t a = 25c figure 8. input offset voltage vs. common-mode voltage v cm (v) v os (v) 0 ?300 ?100 100 300 0.9 2.1 3.0 0.60.3 1.5 2.72.4 1.8 1.2 ?200 ?150 ?250 ?50 0 50 150 200 250 3.3 v s = 3.3v t a = 25c 04356-009 v cm (v) figure 9. input offset voltage vs. common-mode voltage temperature (c) input bias current (pa) 0 0 150 300 400 50 100 125 25 75 100 50 350 250 200 v s = 2.5v 0 4356-010 figure 10. input bias current vs. temperature load current (ma) output voltage to supply rail (mv) 0.001 0.01 0.1 10 100 0.01 0.1 1 10 1000 1 04356-011 v s = 5v t a = 25c source sink figure 11. output voltage to supply rail vs. load current
ad8603/ad8607/AD8609 rev. c | page 7 of 16 temperature (c) output voltage swing (mv) ?40 0 50 100 350 ?25 ?10 125 20 35 50 65 80 95 110 5 150 250 300 200 v ol @ 1ma load v dd ? v oh @ 1ma load v dd ? v oh @ 10ma load v ol @ 10ma load v s = 5v t a = 25c 04356-012 figure 12. output voltag e swing vs. temperature v s = 2.5v r l = 100k ? c l = 20pf = 70.9 1k 10k 100k 1m 10m frequency (hz) phase (degree) open-loop gain (db) 20 ?80 ?20 80 100 60 40 0 ?40 ?60 ?100 45 ?180 ?45 180 225 135 90 0 ?90 ?135 ?225 04356-013 figure 13. open-loop gain and phase vs. frequency frequency (khz) output voltage swing (v p-p) 0.01 0 0.5 4.0 5.0 0.1 1 100 4.5 3.5 3.0 2.0 2.5 1.5 1.0 10 v s = 5v v in = 4.9v p-p t a = 25c a v = 1 04356-014 figure 14. closed-loop output voltage swing vs. frequency v s = 2.5v, 0.9v a v = 100 a v = 10 a v = 1 frequency (hz) output impedance ( ? ) 100 175 350 1575 0 1k 100k 1750 1400 1225 875 1050 700 525 10k 04356-015 figure 15. output im pedance vs. frequency frequency (hz) cmrr (db) 100 ?60 ?40 100 140 1k 10k 120 80 60 20 40 0 ?20 100k v s = 2.5v 04356-016 figure 16. cmrr vs. frequency 10 100 1k 10k 100k frequency (hz) psrr (db) 0 140 ?40 ?60 ?20 20 60 40 80 120 100 04356-017 v s = 2.5v figure 17. psrr vs. frequency
ad8603/ad8607/AD8609 rev. c | page 8 of 16 load capacitance (pf) small sign a l overshoot (%) 10 0 10 20 100 1000 30 os? 50 40 v s = 5v 04356-018 60 os+ figure 18. small signal overshoot vs. load capacitance temperature (c) supply current (a) ?40 35 20 80 ?25 50 60 ?10 5 35 65 10 0 95 110 125 25 50 55 45 40 30 20 15 5 v s = 2.5v 0 4356-019 figure 19. supply current vs. temperature supply voltage (v) supply current (a) 0 0 30 60 80 24 5 3 20 10 70 50 40 1 100 90 04356-020 t a = 25c figure 20. supply current vs. supply voltage v s = 5v, 1.8v time (1s/div) voltage noise (1v/div) 04356-021 figure 21. 0.1 hz to 10 hz input voltage noise v s = 5v r l = 10k ? c l = 200pf a v = 1 time (4s/div) vol t age (50mv/div) 04356-022 figure 22. small signal transient time (20s/div) vol t age (1v/div) 04356-023 v s = 5v r l = 10k ? c l = 200pf a v = 1 figure 23. large signal transient
ad8603/ad8607/AD8609 rev. c | page 9 of 16 v s = 2.5v r l = 10k ? a v = 100 v in = 50mv 0v 0v ?50mv +2.5v time (4 s/div)) v in (mv) v out (v) time (40s/div) 04356-024 figure 24. negative overload recovery v s = 2.5v r l = 10k ? a v = 100 v in = 50mv 0v 0v ?50mv +2.5v time (4s/div) 04356-025 v in (mv) v out (v) figure 25. positive overload recovery frequency (khz) voltage noise density (nv/ hz) 24 0.1 1.0 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0 48 72 96 120 144 168 0 v s = 2.5v 04356-026 figure 26. voltage noise density vs. frequency frequency (khz) voltage noise density (nv/ hz) 22 11 23456789 0 44 66 88 110 132 176 0 0 v s = 2.5v 154 04356-027 figure 27. voltage noise density vs. frequency v os (v) number of amplifiers ?300 0 300 500 800 ?240 60 240 ?180 ?120 120 180 300 400 200 100 700 600 0 ?60 50 150 250 350 450 550 650 750 v s = 1.8v t a = 25c v cm = 0v to 1.8v 04356-028 figure 28. v os distribution v cm (v) v os (v) 0 ?300 ?100 100 300 0.9 0.6 0.3 1.5 1.8 1.2 ?200 ?150 ?250 ?50 0 50 150 200 250 v s = 1.8v t a = 25c 0 4 3 5 6 - 0 2 9 v cm (v) figure 29. input offset voltage vs. common-mode voltage
ad8603/ad8607/AD8609 rev. c | page 10 of 16 load current (ma) output voltage to supply rail (mv) 0.001 0.01 0.1 10 100 0.01 0.1 1 10 1000 1 sink source v s = 1.8v t a = 25c 04356-030 figure 30. output voltage to supply rail vs. load current temperature (c) output voltage swing (mv) ?40 0 30 60 5 35 125 20 20 10 50 40 ?25 70 80 90 100 ?10 50 65 80 95 110 v ol @ 1ma load v dd ? v oh @ 1ma load v s = 1.8v 04356-031 figure 31. output voltag e swing vs. temperature load capacitance (pf) small sign a l overshoot (%) 10 0 10 20 60 100 1000 30 50 40 v s = 1.8v t a = 25c a v = 1 os? os+ 04356-032 figure 32. small signal overshoot vs. load capacitance 1k 10k 100k 1m 10m v s = 0.9v r l = 100k ? c l = 20pf = 70 frequency (hz) phase (degrees) open-loop gain (db) 20 ?80 ?20 80 100 60 40 0 ?40 ?60 ?100 45 ?180 ?45 180 225 135 90 0 ?90 ?135 ?225 04356-033 figure 33. open-loop gain and phase vs. frequency 100 1k 10k 100k v s = 1.8v cmrr (db) 60 ?40 20 120 140 100 80 40 0 ?20 ?60 frequency (hz) 04356-034 figure 34. cmrr vs. frequency 0.01 0.1 1 100 10 frequency (khz) output voltage swing (v p-p) 0 0.9 1.8 0.6 0.3 1.5 1.2 v s = 1.8v v in = 1.7v p-p t a = 25c a v = 1 04356-035 figure 35. closed-loop output voltage swing vs. frequency
ad8603/ad8607/AD8609 rev. c | page 11 of 16 v s = 1.8v r l = 10k ? c l = 200pf a v = 1 voltage (50mv/div) time (4s/div) 04356-036 figure 36. small signal transient v s = 1.8v r l = 10k ? c l = 200pf a v = 1 voltage (500mv/div) time (20s/div) 04356-037 figure 37. large signal transient frequency (khz) voltage noise density (nv/ hz) 28 0.1 1.0 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0 56 84 112 140 168 0 v s = 0.9v 04356-038 figure 38. voltage noise density vs. frequency frequency (khz) voltage noise density (nv/ hz) 22 11 23456789 0 44 66 88 110 132 176 0 0 v s = 0.9v 154 04356-039 figure 39. voltage noise density vs. frequency frequency (hz) channel sepa r a tion (db) 100 ?120 ?40 ?20 0 1k 10k 100k 1m ?60 ?140 ?80 ?100 v s = 2.5v, 0.9v 04356-040 figure 40. channel separation vs. frequency
ad8603/ad8607/AD8609 rev. c | page 12 of 16 applications no phase reversal the ad8603/ad8607/AD8609 do not exhibit phase inversion even when the input voltage exceeds the maximum input common-mode voltage. phase reversal can cause permanent damage to the amplifier, resulting in system lockups. the ad8603/ad8607/AD8609 can handle voltages of up to 1 v over the supply. voltage (1v/div) time (4s/div) v s = 2.5v v in = 6v p-p a v = 1 r l = 10k ? v in v out 04356-041 figure 41. no phase response input overvoltage protection if a voltage 1 v higher than the supplies is applied at either input, the use of a limiting series resistor is recommended. if both inputs are used, each one should be protected with a series resistor. to ensure good protection, the current should be limited to a maximum of 5 ma. the value of the limiting resistor can be determined from the following equation: ( v in ? v s )/( r s + 200 ) 5 ma driving capacitive loads the ad8603/ad8607/AD8609 are capable of driving large capacitive loads without oscillating. figure 42 shows the output of the ad8603/ad8607/AD8609 in response to a 100 mv input signal, with a 2 nf capacitive load. although it is configured in positive unity gain (the worst case), the ad8603 shows less than 20% overshoot. simple additional circuitry can eliminate ringing and overshoot. one technique is the snubber network, which consists of a series rc and a resistive load (see figure 43 ). with the snubber in place, the ad8603/ad8607/AD8609 are capable of driving capacitive loads of 2 nf with no ringing and less than 3% overshoot. the use of the snubber circuit is usually recommended for unity gain configurations. higher gain configurations help improve the stability of the circuit. figure 44 shows the same output response with the snubber in place. v s = 0.9v v in = 100mv c l = 2nf r l = 10k ? 0 4356-042 figure 42. output response to a 2 nf capacitive load, without snubber 04356-043 c s 47pf v cc v ee r s 150 ? 200mv c l v+ v? ? + figure 43. snubber network v sy = 0.9v v in = 100mv c l = 2nf r l = 10k ? r s = 150 ? c s = 470pf 04356-044 figure 44. output response to a 2 nf capacitive load with snubber optimum values for r s and c s are determined empirically; table 5 lists a few starting values. table 5. optimum values for the snubber network c l (pf) r s () c s (pf) 100 to ~500 500 680 1500 100 330 1600 to ~2000 400 100
ad8603/ad8607/AD8609 rev. c | page 13 of 16 proximity sensors proximity sensors can be capacitive or inductive and are used in a variety of applications. one of the most common applications is liquid level sensing in tanks. this is particularly popular in pharmaceutical environments where a tank must know when to stop filling or mixing a given liquid. in aerospace applications, these sensors detect the level of oxygen used to propel engines. whether in a combustible environment or not, capacitive sensors generally use low voltage. the precision and low voltage of the ad8603/ad8607/AD8609 make the parts an excellent choice for such applications. composite amplifiers a composite amplifier can provide a very high gain in applications where high closed-loop dc gains are needed. the high gain achieved by the composite amplifier comes at the expense of a loss in phase margin. placing a small capacitor, c f , in the feedback in parallel with r2 (see figure 45 ) improves the phase margin. picking c f = 50 pf yields a phase margin of about 45 for the values shown in figure 45 . v ee v cc r1 c f 1k? v cc v ee v in 99k ? r2 ad8603 ad8541 v+ v ? v+ v ? r3 r4 99k ? 1k? u5 04356-045 figure 45. high gain composite amplifier a composite amplifier can be used to optimize dc and ac characteristics. figure 46 shows an example using the ad8603 and the ad8541 . this circuit offers many advantages. the band- width is increased substantially, and the input offset voltage and noise of the ad8541 become insignificant because they are divided by the high gain of the ad8603. the circuit in figure 46 offers high bandwidth (nearly double that of the ad8603), high output current, and very low power consumption of less than 100 a. r1 1k? v+ v ? v in 100k ? r2 ad8541 100? c3 1k ? r4 r3 c2 v cc v ee 04356-046 v cc v ee v? v+ ad8603 figure 46. low power composite amplifier battery-powered applications the ad8603/ad8607/AD8609 are ideal for battery-powered applications. the parts are tested at 5 v, 3.3 v, 2.7 v, and 1.8 v and are suitable for various applications whether in single or dual supply. in addition to their low offset voltage and low input bias, the ad8603/ad8607/AD8609 have a very low supply current of 40 a, making the parts an excellent choice for portable electronics. the tsot package allows the ad8603 to be used on smaller board spaces. photodiodes photodiodes have a wide range of applications from barcode scanners to precision light meters and cat scanners. the very low noise and low input bias current of the ad8603/ad8607/ AD8609 make the parts very attractive amplifiers for i-v conversion applications. figure 47 shows a simple photodiode circuit. the feedback capacitor helps the circuit maintain stability. the signal band- width can be increased at the expense of an increase in the total noise; a low-pass filter can be implemented by a simple rc network at the output to reduce the noise. the signal bandwidth can be calculated by ?r2c2, and the closed-loop bandwidth is the intersection point of the open-loop gain and the noise gain. the circuit shown in figure 47 has a closed-loop bandwidth of 58 khz and a signal bandwidth of 16 hz. increasing c2 to 50 pf yields a closed-loop bandwidth of 65 khz, but only 3.2 hz of signal bandwidth can be achieved. c2 10pf r2 1000m ? r1 1000m ? v cc v ee v? v+ ad8603 c1 10pf 04356-047 figure 47. photodiode circuit
ad8603/ad8607/AD8609 rev. c | page 14 of 16 outline dimensions * compliant to jedec standards mo-193-ab with the exception of package height and thickness. pin 1 1.60 bsc 2.80 bsc 1.90 bsc 0.95 bsc 0.20 0.08 0.60 0.45 0.30 8 4 0 0.50 0.30 0.10 max seating plane * 1.00 max * 0.90 0.87 0.84 2.90 bsc 54 12 3 figure 48. 5-lead thin small outline transistor package [tsot] (uj-5) dimensions shown in millimeters compliant to jedec standards mo-187-aa 0.80 0.60 0.40 8 0 4 8 1 5 pin 1 0.65 bsc seating plane 0.38 0.22 1.10 max 3.20 3.00 2.80 coplanarity 0.10 0.23 0.08 3.20 3.00 2.80 5.15 4.90 4.65 0.15 0.00 0.95 0.85 0.75 figure 49. 8-lead mini small outline package [msop] (rm-8) dimensions shown in millimeters
ad8603/ad8607/AD8609 rev. c | page 15 of 16 controlling dimensions are in millimeters; inch dimensions (in parentheses) are rounded-off millimeter equivalents for reference only and are not appropriate for use in design. compliant to jedec standards ms-012-a a 012407-a 0.25 (0.0098) 0.17 (0.0067) 1.27 (0.0500) 0.40 (0.0157) 0.50 (0.0196) 0.25 (0.0099) 45 8 0 1.75 (0.0688) 1.35 (0.0532) seating plane 0.25 (0.0098) 0.10 (0.0040) 4 1 85 5.00 (0.1968) 4.80 (0.1890) 4.00 (0.1574) 3.80 (0.1497) 1.27 (0.0500) bsc 6.20 (0.2441) 5.80 (0.2284) 0.51 (0.0201) 0.31 (0.0122) coplanarity 0.10 figure 50. 8-lead standard small outline package [soic_n] (r-8) dimensions shown in millimeters and (inches) controlling dimensions are in millimeters; inch dimensions (in parentheses) are rounded-off millimeter equivalents for reference only and are not appropriate for use in design. compliant to jedec standards ms-012-ab 060606-a 14 8 7 1 6.20 (0.2441) 5.80 (0.2283) 4.00 (0.1575) 3.80 (0.1496) 8.75 (0.3445) 8.55 (0.3366) 1.27 (0.0500) bsc seating plane 0.25 (0.0098) 0.10 (0.0039) 0.51 (0.0201) 0.31 (0.0122) 1.75 (0.0689) 1.35 (0.0531) 0.50 (0.0197) 0.25 (0.0098) 1.27 (0.0500) 0.40 (0.0157) 0.25 (0.0098) 0.17 (0.0067) coplanarity 0.10 8 0 45 figure 51. 14-lead standard small outline package [soic_n] (r-14) dimensions shown in millimeters and (inches) 4.50 4.40 4.30 14 8 7 1 6.40 bsc pin 1 5.10 5.00 4.90 0.65 bsc seating plane 0.15 0.05 0.30 0.19 1.20 max 1.05 1.00 0.80 0.20 0.09 8 0 0.75 0.60 0.45 coplanarity 0.10 compliant to jedec standards mo-153-ab-1 figure 52. 14-lead thin shrink small outline package [tssop] (ru-14) dimensions shown in millimeters
ad8603/ad8607/AD8609 rev. c | page 16 of 16 ordering guide model temperature range package desc ription package option branding ad8603auj-r2 ?40c to +125c 5-lead tsot uj-5 bfa ad8603auj-reel ?40c to +125c 5-lead tsot uj-5 bfa ad8603auj-reel7 ?40c to +125c 5-lead tsot uj-5 bfa ad8603aujz-r2 1 ?40c to +125c 5-lead tsot uj-5 a0x ad8603aujz-reel 1 ?40c to +125c 5-lead tsot uj-5 a0x ad8603aujz-reel7 1 ?40c to +125c 5-lead tsot uj-5 a0x ad8607arm-r2 ?40c to +125c 8-lead msop rm-8 a00 ad8607arm-reel ?40c to +125c 8-lead msop rm-8 a00 ad8607armz-r2 1 ?40c to +125c 8-lead msop rm-8 a0g ad8607armz-reel 1 ?40c to +125c 8-lead msop rm-8 a0g ad8607ar ?40c to +125c 8-lead soic_n r-8 ad8607ar-reel ?40c to +125 c 8-lead soic_n r-8 ad8607ar-reel7 ?40c to +125 c 8-lead soic_n r-8 ad8607arz 1 ?40c to +125c 8-lead soic_n r-8 ad8607arz-reel 1 ?40c to +125c 8-lead soic_n r-8 ad8607arz-reel7 1 ?40c to +125c 8-lead soic_n r-8 AD8609ar ?40c to +125c 14-lead soic_n r-14 AD8609ar-reel ?40c to +125 c 14-lead soic_n r-14 AD8609ar-reel7 ?40c to +125 c 14-lead soic_n r-14 AD8609arz 1 ?40c to +125c 14-lead soic_n r-14 AD8609arz-reel 1 ?40c to +125c 14-lead soic_n r-14 AD8609arz-reel7 1 ?40c to +125c 14-lead soic_n r-14 AD8609aru ?40c to +125c 14-lead tssop ru-14 ad 8609aru-reel ?40c to +125c 14-lead tssop ru-14 AD8609aruz 1 ?40c to +125c 14-lead tssop ru-14 ad 8609aruz-reel 1 ?40c to +125c 14-lead tssop ru-14 1 z = rohs compliant part. ?2003C2008 analog devices, inc. all rights reserved. trademarks and registered trademarks are the prop erty of their respective owners. d04356-0-6/08(c)


▲Up To Search▲   

 
Price & Availability of AD8609

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X