![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
august 2009 doc id 14589 rev 2 1/54 AN2738 application note l6390 half-bridge gate driver introduction the l6390 is a versatile high voltage gate driver ic which is particularly suited for field oriented control (foc) motor driving applications. it simplifies the design of control systems for a wide range of motor applications such as home appliances, industrial drives, dc motors and fans. designed using bcd off-line technology, this device is capable of operating with voltage rails up to 600 v. the gate driver provides all the functions an d current capability necessary for high side and low side power mosfet and igbt driving. the l639x series are high voltage half-bridge gate drivers. these devices can be used in all applications where high voltage shifted control is necessary. the devices have a driver current capability best suited for home applianc e motor driving ratings, and they are also equipped with patented internal circuitry whic h replaces the external bootstrap diode. this feature is achieved by means of a high voltage dmos synchronously driven with the low side gate driver. the l6390 is a half-bridge driver with several functions such as externally adjustable dead- time, interlocking, smart shutdown (patented), fault comparator and a dedicated high performance op-amp for advanced current sensing. the outputs can be driven by two dedicated logic signals or, alternatively, only one logic signal by connecting the two inputs together. the device is available in the dip16 or so16 packages. figure 1. l6390 application block diagram uv detection level shifter bootstrap driver s v cc lvg driver v cc hin lin hvg driver hvg h.v. to load out lvg boot cboot uv detection + - op+ op- gnd opout sd/od dt opamp dead time r logic shoot through prevention floating structure + - comparator + v ref cp+ sd latch 5v 1 2 11 14 15 16 7 5 8 3 4 10 9 6 smart sd from lvg + from controller from controller from/to controller to adc v bias v bias vcc vcc 5v www.st.com
contents AN2738 2/54 doc id 14589 rev 2 contents 1 pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 logic inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3 uvlo function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 4 dead time and interlocking function manage ment . . . . . . . . . . . . . . . . 8 5 smart shutdown function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 6 l6390 op-amp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 7 bootstrap driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 7.1 c boot selection and charging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 8 application example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 8.1 vcc supply pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 8.2 boot (floating) supply pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 8.3 logic input pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 8.4 shutdown pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 8.5 dead time pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 8.6 op-amp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 8.7 comparator input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 8.8 sense resistor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 8.9 gate driver outputs: gate lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 8.10 gate driving: principle of working with inductive load . . . . . . . . . . . . . . . . 25 9 induced turn-on phenomenon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 10 how to increase the gate driver output current capability . . . . . . . . . 37 11 the below-ground voltage on t he out pin . . . . . . . . . . . . . . . . . . . . . . 39 11.1 the below-ground voltage phenomenon . . . . . . . . . . . . . . . . . . . . . . . . . 39 11.2 how to reduce the below ground spike voltage . . . . . . . . . . . . . . . . . . . . 40 AN2738 contents doc id 14589 rev 2 3/54 11.3 issues related to the below-ground voltage phenomenon . . . . . . . . . . . . 43 11.3.1 vboot voltage safe operating condition . . . . . . . . . . . . . . . . . . . . . . . . 43 11.3.2 bootstrap capacitor over-charging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 11.4 functionality of l6390 outputs in below-ground condition . . . . . . . . . . . . 46 11.4.1 steady state (dc) conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 11.4.2 transient conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 11.4.3 below-ground voltage spikes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 12 layout suggestions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 13 revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 list of figures AN2738 4/54 doc id 14589 rev 2 list of figures figure 1. l6390 application block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 figure 2. input configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 figure 3. l6390 gate driver outputs in uvlo condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 figure 4. timing waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 figure 5. typical dead time vs. dt resistor value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 figure 6. smart shutdown timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 0 figure 7. smart shutdown equivalent circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 figure 8. protection scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 figure 9. disable time vs. sd capacitance (typical values) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 figure 10. 3-phase system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 figure 11. general advanced current sense scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 figure 12. advanced current sensing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 figure 13. l6390 op-amp, application example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 figure 14. typical l6390 ideal output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 figure 15. detail on single pwm cycle in advanced current sensing for foc systems . . . . . . . . . . . 17 figure 16. bootstrap driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 figure 17. external charge pump. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 figure 18. 3-phase drive- typical scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 figure 19. typical application schematic of a 3-phase foc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 figure 20. ex. of an application circuit for one of the three half-bridges of a 3-phase power stage . . 23 figure 21. layout suggestion for the gate driving circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 5 figure 22. gate driver output: equivalent circuit for turn-on. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 6 figure 23. gate driver output: equivalent circuit for turn-off. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 figure 24. hard switching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 figure 25. soft switching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 figure 26. turn-on hard switching details with induction load: gate charge and plateau phase . . . . . 29 figure 27. total equivalent circuit for the turn-on . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 figure 28. turn-off hard switching details with induction load: gate charge and plateau phase . . . . . 31 figure 29. total equivalent circuit for the turn-off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 figure 30. power dissipation during switching (approximation) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 figure 31. r gate dimensioning criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 figure 32. induced turn-on phenomenon - circuital description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 figure 33. block diagram of output current capability enhan cement using external current buffers . . 37 figure 34. example of a gate drivin g circuit with current buffers for cu rrent capability increasing. . . . 38 figure 35. below-ground voltages in l6390 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 figure 36. transient peak forward voltage vs. di f /dt of stth1l06 diode . . . . . . . . . . . . . . . . . . . . . . 41 figure 37. use of out resistor to limit the below ground voltage spike on out pin. . . . . . . . . . . . . . 41 figure 38. use of combination of out resistor and out diode to limit the below ground voltage spike on out pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 figure 39. bootstrap over-charging due to below-ground voltage on out pin . . . . . . . . . . . . . . . . . . 44 figure 40. different bootstrap network characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 figure 41. l6390 safe operating range when the out pin is below ground voltage (in steady state). 46 figure 42. driver functionality in below-ground voltage condition on out pin . . . . . . . . . . . . . . . . . . 46 figure 43. out below-ground voltage in transient conditions: limited boot over-charging . . . . . . . . . 48 figure 44. example of below-ground voltage spike . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 figure 45. layout suggestion for a 3-phase power system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 figure 46. layout example from the steval-ihm021v1 3-phase board . . . . . . . . . . . . . . . . . . . . . . 52 AN2738 pin description doc id 14589 rev 2 5/54 1 pin description table 1. pin description pin n pin name type function 1lin i low side driver logic input (active low) 2sd /od (1) 1. the circuit provides less than 1 v on the lvg and hvg pins (@ i sink = 10 ma), with vcc > 3 v. this allows the omission of the ?bleeder? resistor connected betw een the gate and the source of the external mosfet normally used to hold the pin low. the gate driver ensures low impedance in sd conditions also. see section 4 . i/o shutdown logic input (active low)/open drain (comparator output) 3 hin i high side driver logic input (active high) 4 vcc p lower section supply voltage 5 dt i dead time setting 6 op- i op-amp inverting input 7 opout o op-amp output 8gnd pground 9 op+ i op-amp non inverting input 10 cp+ i comparator input 11 lvg (1) o low side driver output 12,13 nc not connected 14 out p high side (floating) common voltage 15 hvg (1) o high side driver output 16 boot p floating section (bootstrap) supply voltage logic inputs AN2738 6/54 doc id 14589 rev 2 2 logic inputs the l6390 has two logic inputs, hin and lin , to separately control the high side and low side outputs, hvg and lvg. hin is in phase with hvg, while lin is out of phase with lvg. the signal inversion on the low side input allows control of the half-bridge output with only one control signal (see figure 2 ). figure 2. input configuration note that by connecting the two logic input signals together, the resulting dead time is defined by the resistor connected between pin 5 and ground. the dead time can be set to a wide range of values from hundreds of nanoseconds to a few microseconds (see figure 5 or the l6390 datasheet). all the logic inputs are provided with hysteresis (~1 v) for low noise sensitivity and are ttl//cmos 3.3 v compatible. thanks to this low voltage interface logic compatibility, the l6390 can be used with any ki nd of high performance controller, such as microcontrollers, dsps or fpgas. as shown in the block diagram in figure 1 , the logic inputs have internal pull-down (or pull- up) resistors. the purpose of these resistors is to set a proper logic level in case, for example, there is an interruption in the logic lines or the controller outputs are in tri-state conditions. if logic inputs are left floating, the gate driver outputs lvg and hvg are set to low level. the internal resistors are: hin logic input: 85 k (typ.) pull-down lin logic input: 720 k (typ.) pull-up connected to an internal 5 v regulator through a diode sd logic input: 375 k (typ.) pull-down if the logic inputs are connected together as in the single input configuration ( figure 2 ) and they are left floating, the internal pull-down and pull-up resistors form a resistive divider providing a voltage value (about 460 mv) which keeps the hvg off and lvg on, thus turning on the low side power switch. lin l i n hin lvg hvg driver v pulse_hs v pulse_ls hin lvg hvg driver v pulse hvg lvg lin hin hin lin hvg lvg double input configuration single input configuration lin l i n AN2738 uvlo function doc id 14589 rev 2 7/54 3 uvlo function the l6390 supply voltage vcc is continuously monitored by an under-voltage lockout (uvlo) circuitry which turns off the ic outputs when the supply voltage goes below the v cc_thoff threshold (see l6390 datasheet for values) and turns on the device when the supply voltage goes above the v cc_thon voltage. a hysteresis of about 1.5 v is provided for noise rejection purpose. the high voltage floa ting supply vboot is provided with a similar under-voltage lockout circuitry also. when the l6390 is in uvlo condition, both gate driver outputs are set to low level, setting the half-bridge power stage output to high impedance. figure 3 below shows the i-v characteristics of the output buffers at different vcc values. figure 3. l6390 gate driver outputs in uvlo condition v lvg/hvg (v) i lvg/hvg (ma) 45 50 10 vcc = 0v vcc = 1v vcc = 2v vcc = 3v 20 30 40 vcc = 4v vcc = 5v 80 60 70 vcc = 6v 90 vcc = 7v 100 vcc = 9v vcc = 15v 23 1 0 lvg/hvg gnd/out vcc/boot gate driver output buffer (ls/hs) n-channel (sink) p-channel (source) on off vcc + v lvg/hvg + i lvg/hvg a note: when vcc < v lvg/hvg the body diode of the p-channel (source) turns on and clamps the v lvg/hvg voltage test circuit dead time and interlocking function management AN2738 8/54 doc id 14589 rev 2 4 dead time and interlocking function management in order to avoid any possible cross-conduction between the power mosfets/igbts of the half-bridge, the l6390 provides both the dead time and the interlocking functions. the interlocking function is a logic operation which sets both the outputs to low level when the inputs are simultaneously active (hin to high level and lin to low level). the dead time function is a safety time introduced by the device between the falling edge transition of one driver output and the rising edge of the other output. if the rising edge set externally by the user occurs before the end of this dead time, it is ignored and results delayed until the end of the dead time. the dead time can be adjusted externally through the value of the dt resistor connected between pin 5 and pin 8 (see figure 5 ). a 100 nf ceramic capacitor in parallel with this resistor is recommended for noise immunity. in figure 4 the details of dead time and interlocking function management are described. table 2. l6390 truth table inputs outputs sd lin hin lvg hvg lx (1) 1. don?t care x (1) ll hhl l l hlhll hllhl hhhlh AN2738 dead time and interlocking function management doc id 14589 rev 2 9/54 figure 4. timing waveforms figure 5. typical dead time vs. dt resistor value lin hin lvg hvg lin hin lvg hvg lin hin lvg hvg lin hin lvg hvg dt dt dt dt gate driver outputs off (half-bridge tri-state) interlocking interl ocking control signal edges overlapped: interlocking + dead time control signals edges synchronous (*): dead time control signals edges not overlapped, but inside the dead time: dead time control signals edges not overlapped, outside the dead time: direct driving (*) hin and lin can be connected togheter and driven by just one control signal dt interlocking interl ocking g gate driver outputs off (half-bridge tri-state) dt gate driver outputs off (half-bridge tri-state) gate driver outputs off (half-bridge tri-state) dt gate driver outputs off (half-bridge tri-state) gate driver outputs off (half-bridge tri-state) dt gate driver outputs off (half-bridge tri-state) gate driver outputs off (half-bridge tri-state) 0 0.5 1 1.5 2 2.5 3 3.5 0 50 100 150 200 250 300 rdt (kohm) dt (us) smart shutdown function AN2738 10/54 doc id 14589 rev 2 5 smart shutdown function the l6390 integrates a comparator for fault sensing purposes. the comparator has an internal reference voltage v ref on its inverting input (see l6390 datasheet), while the non- inverting input is available on pin 10. the comparator input can be connected to an external shunt resistor in order to implement a simple over-current detection function. the output signal of the comparator is fed to an integrated mosfet with the open drain available on pin 2, shared with the sd input. when the comparator triggers, the device is set in shutdown state and both its outputs are set to low level leading th e half-bridge in tri-state. figure 6. smart shutdown timing waveforms hin/lin hvg/lvg sd/od open drain gate (internal) upper threshold lower threshold comp vref cp+ protection fast shut down: the driver outputs are set in sd state immediately after the comparator triggering even if the sd signal has not yet reach the lower input threshold real disable time 2 1 1 2 = (r on_od // r sd ) c sd = r sd c sd sd/od from/to controller v bias smart sd logic c sd r sd r on_od shut down circuit time constants AN2738 smart shutdown function doc id 14589 rev 2 11/54 in common over-current protection architectu res the comparator output is usually connected to the sd input and an rc network is connected to this sd /od line in order to provide a mono-stable circuit, which implements a protection time that follows the fault condition. unlike common fault detection systems, the l6390 smart shutdown architecture allows to immediately turn-off the output gate driver in case of fault, by minimizing the propagation delay between the fault detection event and the actual outputs switch-off. in fact the time delay between the fault and the outputs turn-off is no more dependent on the rc value of the external network connected to the pin. in the smart shutdown circuitry, the fault signal has a preferential path which directly switches off the outputs after the comparator triggering. at the same time the internal logic turns on the open drain output and holds it on until the sd voltage goes below the sd logic input lower threshold. the smart sd system provides the possibility to increase the time cons tant of the external rc network (that is the disable time after the fault event) without increasing the delay time of the protection. any external signal provided to the sd pin is not latched and can be used as control signal in order to perform, for instance, pwm chopping thr ough this pin. in fact when a pwm signal is applied to the sd input and the logic inputs of the gate driver are stable, the outputs switch from the low level to the state defined by the logic inputs and vice-versa. a block diagram of the smart shutdown architecture is depicted in figure 7 . figure 7. smart shutdown equivalent circuitry in normal operation the outputs follow the commands received from respective input signals. when a fault detection event occurs the fault signal (fsd) is set to high by the fault detection circuit output (lvg, hvg) and the ff receives a set input signal. consequently the ff outputs set output signals to low level and, at the same time, turn-on the open drain mosfet which works as active pull-down for the sd signal. note that the gate driver outputs stay at low level until the sd pin has experienced both a falling edge and a rising edge, although the fault signal could be retu rned to low level immediately after the fault sensing. in fact even if the ff is reset by the falling edge of the sd input, the sd signal also works as enable for the outputs, thanks to the two and ports. moreover once the internal open-drain transistor has been activated, due to the latch, it cannot be turned-off until the sd pin voltage reaches the low logic level. note that, since the ff is set dominant, s r q sd lin lvg fsd ff q v ref v bias set dominant ff cp+ hin hvg smart shutdown function AN2738 12/54 doc id 14589 rev 2 oscillations of the sd pin are avoided if the fault signal remains steady at high level. the block diagram of a power system using the gate driver with the smart shutdown architecture is shown in figure 8 . an rc network is used to implement the disable time after a fault detection event. figure 8. protection scheme in figure 9 the typical duration of the disable time vs. the sd capacitance with different r sd values and v bias values is shown. figure 9. disable time vs. sd capacitance (typical values) bias 6 ' & |