Part Number Hot Search : 
24100 XLT20SS BTS441 1608X7R E004032 IR91458 100WAC 01010
Product Description
Full Text Search
 

To Download APA2606NAI-TRG Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  copyright ? anpec electronics corp. rev. a.9 - apr., 2017 www.anpec.com.tw 1 anpec reserves the right to make changes to improve reliability or manufacturability without notice, and advise customers to obtain the latest version of relevant information to verify before placing orders. 2.8w stereo class-d audio power amplifier and class ab headphone driver (dc volume control, uvp, agc function) apa2606 the apa2606 is a stereo, high efficiency, filter-free class- d audio amplifier available in ssop-24 and ssop-24p packages. the apa2606 provides the precise dc volume control, and the gain range is from -80db (v volume =0v) to +20db (v volume =5v) with 64 steps precise control. it s easy to get the suitable amplifier s gain with the 64 steps gain setting. the filter-free architecture eliminates the output filters compared to the traditional class-d audio amplifier, and reduces the external component counts and the compo- nents high, it could save the pcb space, system cost, simplifies the design and the power loss at filter. apa2606 provides an agc (non-clip) function, and this function can low down the dynamic range for large input signal. apa2606 can provide from 20db to -80db with 64 steps gain decrease for non-clipping function, and this function can avoid output signal clipping. the apa2606 also integrates the de-pop circuitry that re- duces the pops and click noises during power on/off or shutdown enable process. the apa2606 has build-in over-current and thermal pro- tection that prevent the chip being destroyed by short- circuit or over-temperature situation. apa2606 combines a stereo bridge-tied loads (btl) mode for speaker drive and a stereo single-end (se) mode for headphone drive into a single chip, where both modes are easily switched by the se/btl input control pin signal. apa2606 is capable of driving 2.8w at 5v into 4 w speaker. the efficiency can archived 85% at r l =4 w when p o =2.8w at v dd =5v. apa2606 is capable of driving 60mw at 5v into 32 w headphone. features general description applications lcd tvs dvd player active speakers operating voltage: 3.3v-5.5v high efficiency 85% at p o =2.8w, 4 w speaker, v dd =5v filter-free class-d amplifier low shutdown current - i dd =1 m a at v dd =5v 64 steps volume adjustable from -80db to +20db by dc voltage with hysteresis agc (non-clip) function under-voltage protection function output power at thd+n=1% btl mode - 2.25w at v dd =5v, r l =4 w - 1.3w at v dd =5v, r l =8 w se mode - 68mw at v dd =5v, r l =32 w output power at thd+n=10% - 2.8w at v dd =5v, r l =4 w - 1.6w at v dd =5v, r l =8 w less external components required two output modes allowable with btl and se modes selected by se/btl pin thermal and over-current protections with auto- recovery power enhanced packages ssop-24 and ssop-24p lead free and green devices available (rohs compliant)
copyright ? anpec electronics corp. rev. a.9 - apr., 2017 www.anpec.com.tw 2 apa2606 pin configuration simplified application circuit thermal pad (connected the thermal pad to gnd plane for better dissipation = apa2606 routp routn loutn loutp rinn linn volume stereo input signals signal hp_routp hp_loutp vdd se/btl se/btl gnd 3 14 bypass gnd 2 mute 6 linn 8 17 rinn volume 11 19 sd 23 gnd 22 gnd 21 routn 24 routp loutn 4 pvdd 5 16 agc uvp 9 vdc 10 13 hp_rout hp_lout 12 15 se/btl ssop-24 20 pvdd 18 gnd loutp 1 vdd 7 apa2606 top view ssop-24p apa2606 topview apa2606 14 bypass 17 rinn 19 sd 23 gnd 22 gnd 21 routn 24 routp 16 agc 13 hp_rout 15 se/btl 20 pvdd 18 gnd gnd 3 gnd 2 mute 6 linn 8 volume 11 loutn 4 pvdd 5 uvp 9 vdc10 hp_lout 12 loutp 1 vdd 7
copyright ? anpec electronics corp. rev. a.9 - apr., 2017 www.anpec.com.tw 3 apa2606 ordering and marking information note : anpec lead-free products contain molding compounds/die attach materials and 100% matte tin plate termination finish; which are fully compliant with rohs. anpec lead-free products meet or exceed the lead-free requirements of ipc/jedec j-std-020d for msl classification at lead-free peak reflow temperature. anpec defines green to mean lead-free (rohs compliant) and halogen free (br or cl does not exceed 900ppm by weight in homogeneous material and total of br and cl does not exceed 1500ppm by weight). absolute maximum ratings (note 1) symbol parameter rating unit v dd supply voltage (vdd, pvdd to gnd) -0.3 to 6 input voltage (linn, rinn to gnd) -0.3 to v dd +0.3 input voltage (sd, mute, agc, uvp, vdc, volume and se/btl, bypass to gnd) -0.3 to v dd +0.3 v t j maximum junction temperature 150 t stg storage temperature range -65 to +150 t sdr maximum soldering temperature range, 10 seconds 260 o c p d power dissipation internally limited w note 1: absolute maximum ratings are those values beyond which the life of a device may be impaired. exposure to absolute maximum rating conditions for extended periods may affect device reliability. thermal characteristics symbol parameter typical value unit q ja thermal resistance -junction to ambient (note 2) ssop-24 ssop-24p 96 45 o c/w q jc thermal resistance -junction to case (note 3) ssop-24 ssop-24p 18 11 o c/w note 2: please refer to layout recommendation , the gnd pin on the central of the ic should connect to the ground plan, and the pcb is a 2-layer, 5-inch square area with 2oz copper thickness. note 3: the case temperature is measured at the center of the gnd pin on the underside of the ssop-24 package. recommended operating conditions symbol parameter range unit v dd supply voltage 3.3 ~ 5.5 v apa2606 handling code temperature range package code package code n : ssop-24 na : ssop-24p operating ambient temperature range i : -40 to 85 o c handling code tr : tape & reel assembly material g : halogen and lead free device assembly material apa2606 xxxxx apa2606 n: xxxxx - date code apa2606 xxxxx apa2606 na: xxxxx - date code
copyright ? anpec electronics corp. rev. a.9 - apr., 2017 www.anpec.com.tw 4 apa2606 recommended operating conditions (cont.) electrical characteristics apa2606 symbol parameter test conditions min. typ. max. unit v bypass bypass pin voltage 0.49x v dd 0.5x v dd 0.51x v dd v i dd supply current (btl) v mute =0v, v /sd =5v, no load - 5 12 ma i dd supply current (se) v mute =0v, v /sd =5v, no load - 2 6 ma i sd supply current v mute =0v, v /sd =0v, no load - - 1 i i input current sd, mute, volume - - 1 m a f osc oscillator frequency (v dd =3.3~5.5v, t a = -40~85 o c) 400 500 600 khz r i input resistance (btl) gain=20db 31 36 42 k w r i input resistance (se) gain=3.5db 51 59 68 k w v dd =5.5v, i l =0.8a - 690 - v dd =4.5v, i l =0.6a - 720 - r dson static drain-source on-state resistance power mosfet (p+n) v dd =3.6v, i l =0.4a - 760 - m w t start-up start-up time from shutdown bypass capacitor, c b =2.2 m f. - 1.2 - s v uvp external undervoltage detection 1.16 1.2 1.24 v i hys external undervoltage detection hystereis current 3.68 4.6 5.52 ua v dd =5v, v gnd =0v, t a = 25 o c, gain=20db (unless otherwise noted). symbol parameter range unit sd, mute 2 ~ v dd v ih high level threshold voltage se/ btl 0.8 v dd ~ v dd v sd, mute 0 ~ 0.8 v il low level threshold voltage se/btl 0 ~ 1.0 v v icm common mode input voltage 1 ~ v dd -1 v t a ambient temperature range -40 ~ 85 t j junction temperature range -40 ~ 125 o c r l speaker resistance 3.5 ~ w
copyright ? anpec electronics corp. rev. a.9 - apr., 2017 www.anpec.com.tw 5 apa2606 electrical characteristics (cont.) v dd =5v, v gnd =0v, t a = 25 o c, gain=20db (unless otherwise noted). apa2606 symbol parameter test conditions min. typ. max. unit v dd =5v, t a =25 c, gain=3.5db thd+n=1% f in =1khz r l =32 w 50 68 - p o output power thd+n=10% f in =1khz r l =32 w - 88 - mw thd+n total harmonic distortion plus noise f in =1khz r l =32 w p o =42.5mw - 0.02 - % crosstalk channel separation p o =6mw, r l =32 w , f in =1khz - -90 - f in =100hz - -60 - psrr power supply rejection ratio r l =32 w , input ac-ground f in =1khz - -70 - snr signal to noise ratio with a-weighting filter v o =1v rms , r l =32 w. -85 -88 - db v n output noise with a-weighting filter (gain=3.5db) - 20 45 m vrms v os output offset voltage r l =32 w , (gain=3.5db) - 5 10 mv operating characteristics, se mode apa2606 symbol parameter test conditions min. typ. max. unit v dd =5v, t a =25 c, gain=6db r l =4 w 2.1 2.25 - thd+n=1% f in =1khz r l =8 w 1.0 1.3 - r l =4 w - 2.8 - p o output power thd+n=10% f in =1khz r l =8 w - 1.6 - w h efficiency r l =4 w , p o =2.8w 80 85 - r l =4 w , p o =1.6w - 0.06 0.3 thd+n total harmonic distortion plus noise f in =1khz r l =8 w , p o =0.8w - 0.05 0.2 % crosstalk channel separation p o =0.2w, r l =4 w , f in =1khz - -85 - db f in =100hz - -50 - psrr power supply rejection ratio r l =4 w , input ac-ground f in =1khz - -60 - db snr signal to noise ratio with a-weighting filter v o =1v rms , r l =8 w -75 -78 db att mute mute attenuation f in =1khz, r l =8 w , v in =1v rms - -85 - att shutdown shutdown attenuation f in =1khz, r l =8 w , v in =1v rms - -110 - db v n output noise with a-weighting filter - 80 120 m vrms v os output offset voltage r l =4 w (gain=20db) - 20 30 mv operating characteristics, btl mode
copyright ? anpec electronics corp. rev. a.9 - apr., 2017 www.anpec.com.tw 6 apa2606 typical operating characteristics efficiency vs. output power efficiency (%) output power (w) efficiency vs. output power efficiency (%) output power (w) thd+n vs. output power thd+n (%) output power (w) thd+n vs. output power thd+n (%) output power (w) thd+n vs. output power thd+n vs. output power thd+n (%) thd+n (%) output power (w) output power (w) v dd =3.6v f in =1khz r l =4 w a v =20db aux-0025 aes-17(20khz) ssop-24 v dd =5v v dd =5.5v v dd =3.3v 0.03 4 0.5 1 2 0.01 20 0.1 1 0.06 2 0.5 0.71 v dd =3.6v v dd =5v v dd =5.5v v dd =3.3v f in =1khz r l =8 w a v =20db aux-0025 aes-17(20khz) ssop-24 0.01 20 0.1 1 0.0 0.5 1.0 1.5 2.0 2.5 3.0 r l =4 w +33 m h f in =1khz thd+n Q 10% a v =20db aux-0025 aes-17(20khz) 0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0 r l =8 w +33 m h f in =1khz thd+n Q 10% a v =20db aux-0025 aes-17(20khz) 0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0 0.0 0.3 0.6 0.9 1.2 1.5 0.06 4 0.2 0.5 1 2 3 v dd =5.0v f in =1khz r l =4 w aux-0025 aes-17(20khz) ssop-24 a v =12db a v =6db a v =20db 0.01 20 0.1 1 v dd =5.0v f in =1khz r l =8 w aux-0025 aes-17(20khz) ssop-24 a v =12db a v =6db a v =20db 0.01 20 0.1 1 0.03 2 0.1 0.3 1
copyright ? anpec electronics corp. rev. a.9 - apr., 2017 www.anpec.com.tw 7 apa2606 typical operating characteristics (cont.) thd+n vs. output power thd+n (%) output power (w) thd+n vs. output power thd+n (%) output power (w) thd+n vs. output power thd+n vs. output power thd+n (%) thd+n (%) output power (w) output power (w) 0.01 0.2 0.03 0.05 0.1 v dd =3.6v f in =1khz r l =16 w a v =3.5db aes-17(20khz) ssop-24 v dd =5v v dd =5.5v v dd =3.3v 0.01 20 0.1 1 0.02 0.1 0.04 0.06 0.08 v dd =3.6v v dd =5v v dd =5.5v v dd =3.3v f in =1khz r l =32 w a v =3.5db aes- 17(20khz) ssop-24 0.01 20 0.1 1 thd+n vs. frequency thd+n (%) frequency (hz) thd+n vs. frequency thd+n (%) frequency (hz) v dd =3.3/5.0/5.5v p o =0.7/1.63/1.95w r l =4 w aux-0025 aes-17(20khz) ssop-24 a v =20db, vdd=5.5v, po=1.95w a v =20db, vdd=5.0v, po=1.63w a v =20db, vdd=3.3v, po=0.7w 0.001 10 0.01 0.1 1 20 20k 200 1k 10k v dd =5.0v p o =1.63w r l =4 w aux-0025 aes-17(20khz) ssop-24 a v =12db a v =20db a v =6db 0.001 10 0.01 0.1 1 20 20k 100 1k 10k 10m 200m 30m 50m 100m v dd =5.0v f in =1khz r l =16 w aes-17(20khz) ssop-24 a v =0db a v =3.5db 0.01 20 0.1 1 0 0.12 0.02 0.04 0.06 0.08 0.1 v dd =5.0v f in =1khz r l =32 w aes-17(20khz) ssop-24 a v =0db a v =3.5db 0.01 20 0.1 1
copyright ? anpec electronics corp. rev. a.9 - apr., 2017 www.anpec.com.tw 8 apa2606 typical operating characteristics (cont.) thd+n vs. frequency thd+n (%) frequency (hz) thd+n vs. frequency thd+n (%) frequency (hz) thd+n vs. frequency thd+n (%) frequency (hz) thd+n vs. frequency thd+n (%) frequency (hz) 20 20k 100 1k 10k v dd =3.3/5.0/5.5v p o =20/48/60mw r l =32 w aes-17(20khz) ssop-24 a v =3.5db, vdd=5.5v, po=60mw a v =3.5db, vdd=5.0v, po=48mw a v =3.5db, vdd=3.3v, po=20mw 0.001 10 0.01 0.1 1 20 20k 100 1k 10k v dd =5.0v p o =48mw r l =32 w aes-17(20khz) ssop-24 a v =0db a v =3.5db 0.001 10 0.01 0.1 1 crosstalk vs. frequency crosstalk (db) frequency (hz) crosstalk vs. frequency crosstalk (db) frequency (hz) 10 20k 100 1k 10k v dd =3.6/5.0v vo=1v r l =4 w aux-0025 aes-17(20khz) ssop-24 v dd =5.0v , r-ch to l-ch v dd =5.0v , l-ch to r-ch v dd =3.6v , l-ch to r-ch v dd =3.6v , r-ch to l-ch -100 -60 -95 -90 -85 -80 -75 -70 -65 10 20k 100 1k 10k v dd =5.0v vo=1.0v r l =32 w aes-17(20khz) ssop-24 a v =3.5db, r-ch to l-ch a v =3.5db, l-ch to r-ch a v =0db, l-ch to r-ch a v =0db, r-ch to l-ch -120 -60 -115 -110 -105 -100 -95 -90 -85 -80 -75 -70 -65 v dd =3.3/5.0/5.5v p o =0.41/0.96/1.17w r l =8 w aux-0025 aes-17(20khz) ssop-24 a v =20db, vdd=5.5v, po=1.17w a v =20db, vdd=5.0v, po=0.96w a v =20db, vdd=3.3v, po=0.41w 0.001 10 0.01 0.1 1 20 20k 100 1k 10k v dd =5.0v p o =0.96w r l =8 w aux-0025 aes-17(20khz) ssop-24 a v =12db a v =20db a v =6db 0.001 10 0.01 0.1 1 20 20k 100 1k 10k
copyright ? anpec electronics corp. rev. a.9 - apr., 2017 www.anpec.com.tw 9 apa2606 typical operating characteristics (cont.) agc function output power vs. input ac output power (w) input ac (vrms) output noise voltage vs. frequency output noise voltage (vrms) frequency (hz) output noise voltage vs. frequency output noise voltage (vrms) frequency (hz) 10 20k 100 1k 10k v dd =5.0v r l =4 w input ac ground a v =20db a v =10db a v =6db a v =0db aux-0025 aes-17(20khz) ssop-24 25 m 300 m 50 m 75 m 100 m 125 m 150 m 175 m 200 m 225 m 250 m 275 m 10 20k 100 1k 10k v dd =5.0v r l =32 w input ac ground aes-17(20khz) ssop-24 a v =3.5db a v =0db a v =-6db 10 m 100 m 20 m 30 m 40 m 50 m 60 m 70 m 80 m 90 m frequency response gain (db) frequency (hz) frequency response gain (db) frequency (hz) phase (deg) phase (deg) 10 200k 100 1k 10k t t v dd =5.0v r l =16 w ssop-24 amplitude,a v =3.5db amplitude,a v =0db phase, a v =-10db +0 +350 +25 +50 +75 +100 +125 +150 +175 +200 +225 +250 +275 +300 +325 -20 +4 -18 -16 -14 -12 -10 -8 -6 -4 -2 -0 +2 agc function output power vs. input ac output power (w) input ac (vrms) t v dd =5.0v r l =4 w amplitude,a v =5db amplitude,a v =15db phase, a v =20db phase, a v =10db aux-0025 ssop-24 +2 +22 +4 +6 +8 +10 +12 +14 +16 +18 +20 -200 +200 -175 -150 -125 -100 -75 -50 -25 +0 +25 +50 +75 +100 +125 +150 +175 10 200k 100 1k 10k 0.2 1.4 0.4 0.6 0.8 1 1.2 v dd =5.0v r l =8 w aes-17(20khz) ssop-24 v agc to gnd 0.2 1.6 0.4 0.6 0.8 1 1.2 1.4 0.2 1.4 0.4 0.6 0.8 1 1.2 0.2 1.6 0.4 0.6 0.8 1 1.2 1.4 v dd =5.0v r l =8 w aes-17(20khz) ssop-24 v agc to gnd
copyright ? anpec electronics corp. rev. a.9 - apr., 2017 www.anpec.com.tw 10 apa2606 typical operating characteristics (cont.) mute attenuation vs. frequency gain (db) frequency (hz) shutdown attenuation vs. frequency gain (db) frequency (hz) psrr vs. frequency psrr (db) frequency (hz) gain vs. volume voltage gain (db) dc volume voltage (v) supply current vs. supply voltage shutdown current (ma) voltage (v) shutdown current vs. supply voltage shutdown current ( m a) voltage (v) 20 20k 100 1k 10k v dd =5.0v r l =4 w a v =20db v o =1vrms aux-0025 aes-17(20khz) ssop-24 right channel left channel -130 -60 -120 -110 -100 -90 -80 -70 20 20k 100 1k 10k v dd =5.0v r l =4 w a v =20db v o =1vrms aux-0025 aes-17(20khz) ssop-24 right channel left channel -130 -60 -120 -110 -100 -90 -80 -70 20 20k 100 1k 10k v dd =5.0v r l =8 w a v =20db v rr =0.2vrms input floating aux-0025 aes-17(20khz) ssop-24 -100 +0 -90 -80 -70 -60 -50 -40 -30 -20 -10 0.0 1.0 2.0 3.0 4.0 5.0 v dd =5.0v no load aux-0025 aes-17(20khz) gain down gain up -80 -70 -60 -50 -40 -30 -20 -10 0 10 20 0 1 2 3 4 5 6 0.0 2.0 4.0 6.0 no load btl mode se mode 0.0 2.0 4.0 6.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
copyright ? anpec electronics corp. rev. a.9 - apr., 2017 www.anpec.com.tw 11 apa2606 typical operating characteristics (cont.) power dissipation vs. output power power dissipation (w) output power (w) rl=4ohm rl=8ohm 0.0 0.1 0.2 0.3 0.4 0.0 0.5 1.0 1.5 2.0 2.5
copyright ? anpec electronics corp. rev. a.9 - apr., 2017 www.anpec.com.tw 12 apa2606 pin no. name i/o/p function 1 loutp o positive output of left channel power amplifier. 2, 3, 22, 23 gnd p power amplifier s ground. 4 loutn o negative output of left channel power amplifier. 5,20 pvdd p power amplifier s power supply. 6 mute i mute control signal input. place entire ic in mute mode when held low cannot float. 7 vdd p control and bias block s power supply. 8 linn i negative input of left channel power amplifier. 9 uvp i under-voltage protection input. floating or pull h disable this function. 10 vdc p volume control block s power supply. 11 volume i internal gain setting input. 12 hp_lout o headphone output of left channel power amplifier. 13 hp_rout o headphone output of right channel power amplifier. 14 bypass p bias voltage for power amplifiers. 15 hp/btl i output mode control input, high for hp output mode and low for btl mode cannot float. 16 agc i maximum output power setting input. when held high disable agc function. 17 rinn i negative input of right channel power amplifier. 18 gnd p control and bias block s ground. 19 sd i shutdown mode control input. place entire ic in shutdown mode when held low cannot float. 21 routn o negative output of right channel power amplifier. 24 routp o positive output of right channel power amplifier. pin description
copyright ? anpec electronics corp. rev. a.9 - apr., 2017 www.anpec.com.tw 13 apa2606 block diagram protection function gate drive gate drive routp pvdd routn rinn oscillator volume linn shutdown control gate drive gate drive loutp pvdd loutn volume control biases & reference sd bypass bypass gnd agc control agc vdd gnd gnd vdc mute hp_rout hp_lout se/btl under-voltage detection circuit uvp se/btl
copyright ? anpec electronics corp. rev. a.9 - apr., 2017 www.anpec.com.tw 14 apa2606 rl ( w ) r4 (k w ) r5 (k w ) p o (w) v agc (v) 29.4 12.0 2.20 1.450 4 21.7 12.0 1.70 1.575 8 30.9 12.0 1.20 1.400 typical application circuit vdd=5v note 4 :the resistance must use 1%. mute control 4 w 2 gnd 1 loutp 3 gnd gnd 23 routp 24 gnd 22 4 loutn routn 21 5 pvdd 6 mute sd 19 7 vdd gnd 18 9 uvp 8 linn agc 16 rinn 17 pvdd 20 4 w 10 m f pv dd c s1 0.1 m f c s2 0.1 m f c s3 shutdown control 1 m f left channel input signal c i2 1 m f left channel input signal c i2 v dd 2.2 m f c b r 1 50k w c s4 1 m f apa2606 (top view) 10 vdc 11 volume 12 hp_lout se/btl 15 bypass 14 hp_rout 13 se/btl control se/btl signal 220 m f 220 m f v dd r4 r5 r1 r2 headphone jack r3 1k w 1k w vsystem c s5 1 m f
copyright ? anpec electronics corp. rev. a.9 - apr., 2017 www.anpec.com.tw 15 apa2606 dc volume control table step gain(btl) gain(se) low (%) high (%) recom(%) low (5v) high(5v) recom(5v) 1 -80.0 -80.0 0.00 1.86 0.00 0.000 0.093 0.00 2 -41.0 -55.3 2.35 3.37 2.86 0.118 0.169 0.14 3 -35.0 -49.3 3.77 4.91 4.34 0.188 0.246 0.22 4 -29.0 -43.0 5.32 6.45 5.89 0.266 0.322 0.29 5 -23.0 -36.9 6.84 8.00 7.42 0.342 0.400 0.37 6 -17.0 -30.7 8.41 9.54 8.98 0.421 0.477 0.45 7 -11.0 -24.7 9.97 11.10 10.53 0.498 0.555 0.53 8 -9.0 -22.7 11.53 12.65 12.09 0.576 0.633 0.60 9 -7.0 -20.7 13.08 14.19 13.64 0.654 0.710 0.68 10 -5.0 -18.8 14.64 15.73 15.19 0.732 0.787 0.76 11 -3.0 -16.8 16.18 17.26 16.72 0.809 0.863 0.84 12 -2.0 -15.8 17.71 18.84 18.28 0.886 0.942 0.91 13 -1.0 -14.9 19.25 20.37 19.81 0.963 1.019 0.99 14 0.0 -13.9 20.81 21.91 21.36 1.040 1.096 1.07 15 0.4 -13.5 22.36 23.49 22.93 1.118 1.175 1.15 16 0.8 -13.1 23.92 25.07 24.50 1.196 1.253 1.22 17 1.2 -12.8 25.48 26.59 26.03 1.274 1.329 1.30 18 1.6 -12.4 27.04 28.12 27.58 1.352 1.406 1.38 19 2.0 -12.0 28.55 29.67 29.11 1.427 1.484 1.46 20 2.4 -11.6 30.11 31.21 30.66 1.505 1.561 1.53 21 2.8 -11.3 31.64 32.75 32.19 1.582 1.638 1.61 22 3.2 -10.9 33.20 34.31 33.75 1.660 1.715 1.69 23 3.6 -10.5 34.74 35.84 35.29 1.737 1.792 1.76 24 4.0 -10.1 36.29 37.40 36.85 1.815 1.870 1.84 25 4.4 -9.8 37.83 38.98 38.40 1.891 1.949 1.92 26 4.8 -9.4 39.38 40.51 39.95 1.969 2.026 2.00 27 5.2 -9.0 40.94 42.05 41.50 2.047 2.102 2.07 28 5.6 -8.6 42.48 43.61 43.04 2.124 2.180 2.15 29 6.0 -8.3 44.03 45.15 44.59 2.202 2.257 2.23 30 6.4 -7.9 45.57 46.68 46.12 2.279 2.334 2.31 31 6.8 -7.5 47.11 48.24 47.67 2.356 2.412 2.38 32 7.2 -7.2 48.67 49.79 49.23 2.433 2.490 2.46
copyright ? anpec electronics corp. rev. a.9 - apr., 2017 www.anpec.com.tw 16 apa2606 dc volume control table (cont.) step gain(btl) gain(se) low (%) high (%) recom(%) low (5v) high(5v) recom(5v) 33 7.6 -6.8 50.22 51.35 50.79 2.511 2.568 2.54 34 8.0 -6.4 51.76 52.91 52.33 2.588 2.645 2.62 35 8.4 -6.1 53.31 54.42 53.87 2.666 2.721 2.69 36 8.8 -5.7 54.85 55.98 55.42 2.743 2.799 2.77 37 9.2 -5.4 56.41 57.54 56.97 2.820 2.877 2.85 38 9.6 -5.0 57.95 59.09 58.52 2.897 2.955 2.93 39 10.0 -4.6 59.50 60.65 60.08 2.975 3.033 3.00 40 10.4 -4.3 61.06 62.17 61.61 3.053 3.108 3.08 41 10.8 -3.9 62.60 63.70 63.15 3.130 3.185 3.16 42 11.2 -3.6 64.13 65.26 64.70 3.207 3.263 3.23 43 11.6 -3.2 65.69 66.84 66.26 3.284 3.342 3.31 44 12.0 -2.9 67.25 68.42 67.83 3.362 3.421 3.39 45 12.4 -2.5 68.80 69.95 69.38 3.440 3.498 3.47 46 12.8 -2.2 70.34 71.49 70.91 3.517 3.574 3.55 47 13.2 -1.8 71.90 73.04 72.47 3.595 3.652 3.62 48 13.6 -1.5 73.45 74.60 74.03 3.673 3.730 3.70 49 14.0 -1.2 75.01 76.14 75.57 3.750 3.807 3.78 50 14.4 -0.8 76.56 77.69 77.13 3.828 3.885 3.86 51 14.8 -0.5 78.10 79.25 78.67 3.905 3.963 3.93 52 15.2 -0.2 79.64 80.78 80.21 3.982 4.039 4.01 53 15.6 0.2 81.20 82.32 81.76 4.060 4.116 4.09 54 16.0 0.5 82.75 83.88 83.31 4.138 4.194 4.17 55 16.4 0.8 84.29 85.46 84.87 4.214 4.273 4.24 56 16.8 1.1 85.82 87.00 86.41 4.291 4.350 4.32 57 17.2 1.4 87.36 88.55 87.95 4.368 4.428 4.40 58 17.6 1.7 88.90 90.11 89.50 4.445 4.506 4.48 59 18.0 2.0 90.47 91.65 91.06 4.524 4.582 4.55 60 18.4 2.3 92.01 93.20 92.61 4.601 4.660 4.63 61 18.8 2.6 93.57 94.74 94.15 4.678 4.737 4.71 62 19.2 2.9 95.13 96.32 95.72 4.756 4.816 4.79 63 19.6 3.2 96.66 97.86 97.26 4.833 4.893 4.86 64 20.0 3.5 98.22 100 100.00 4.911 5.000 5.00
copyright ? anpec electronics corp. rev. a.9 - apr., 2017 www.anpec.com.tw 17 apa2606 function description class-d operation v outp v out (v outp -v outn ) i out i out output = 0v output > 0v i out output < 0v v outn v outp v outn v outn v outp v out (v outp -v outn ) v out (v outp -v outn ) figure1. the apa2606 output waveform (voltage& current) the apa2606 power amplifier modulation scheme is shown in figure 1; the outputs v outp and v outn are in phase with each other when no input signals. when output > 0v, the duty cycle of v outp is greater than 50% and v outn is less than 50%; when output <0v, the duty cycle of v outp is less than 50% and v outn is greater than 50%. this method reduces the switching current across the load, and re- duces the i 2 r losses in the load that improve the amplifier s efficiency. this modulation scheme has very short pulses across the load, this making the small ripple current and very little loss on the load, and the lc filter can be eliminated in most applications. added the lc filter can increase the efficiency by filter the ripple current. bypass voltage the bypass voltage is equal to v dd /2, this voltage is for bias the internal preamplifier stages. the external ca- pacitor for this reference (c b ) is a critical component and serves several important functions. dc volume control function the apa2606 has an internal stereo volume control whose setting is the function of the dc voltage applied to the volume input pin. the apa2606 volume control consists of 64 steps that are individually selected by a variable dc voltage level on the volume control pin. the range of the steps controlled by the dc voltage are from +20db to -80db. each gain step corresponds to a specific input voltage range, as shown in the table. to minimize the effect of noise on the volume control pin, which can affect the selected gain level, hysteresis and clock delay are implemented. the amount of hysteresis corresponds to half of the step width, as shown in the dc volume con- trol table . for the highest accuracy, the voltage shown in the rec- ommended voltage column of the table is used to select a desired gain. this recommended voltage is exactly half- way between the two nearest transitions. the gains level have are 0.4db/step from 20db to 0db; 1db/step from 0db to -3db; 2db/step from -3db to -11db and 6db/step from -11db to -41db and the last step at -80db as mute mode. agc (non-clipping) function the apa2606 provides the 64 steps non-clipping control, and the range is from 20db to -80db. when the output reaches the maximum power setting value, the internal programmable gain amplifier (pga) will decrease the gain for prevent the output waveform clipping. this feature pre- vents speaker damage from occurring clipping. using the agc pin to set the non-clipping function and limit the output power.
copyright ? anpec electronics corp. rev. a.9 - apr., 2017 www.anpec.com.tw 18 apa2606 function description (cont.) table 1: agc setting threshold v.s output power agc function output power vdd~0.45vdd disable agc function 0.45vdd~0.27vdd 8() 2 agc ? vdd-v po= rl 0.27vdd~gnd (max output power 4 w ) po=2.513w (max output power 8 w ) po= 1.26w shutdown operation in order to reduce power consumption while not in use, the apa2606 contains a shutdown function to externally turn off the amplifier bias circuitry. this shutdown feature turns the amplifier off when logic low is placed on the sd pin for apa2606. the trigger point between a logic high and logic low level is typically 0.65v. it is the best to switch between ground and the supply voltage v dd to provide maximum device performance. by switching the sd pin to a low level, the amplifier enters a low-consumption- current state, i dd for apa2606 is in shutdown mode. on normal operating, apa2606 s sd pin should pull to a high level to keep the ic out of the shutdown mode. the sd pin should be tied to a definite voltage to avoid unwanted state changes. over-current protection the apa2606 monitors the output current, and when the current exceeds the current-limit threshold, the apa2606 turn-off the output stage to prevent the output device from damages in over-current or short-circuit condition. the ic will turn-on the output buffer after 1ms, but if the over- current or short-circuits condition is still remain, it enters the over-current protection again. the situation will circu- late until the over-current or short-circuits has be removed. thermal protection the over-temperature circuit limits the junction tempera- ture of the apa2606. when the junction temperature ex- ceeds t j =+150 o c, a thermal sensor turns off the output buffer, allowing the devices to cool. the thermal sensor allows the amplifier to start-up after the junction tempera- ture down about 125 o c. the thermal protection is de- signed with a 25 o c hysteresis to lower the average t j during continuous thermal overload conditions, increas- ing lifetime of the ic. under-voltage protection external under voltage detection can be used to shut- down the apa2606 before an input device can generate a pop. the shutdown threshold at the uvp pin is 1.2v. the user selects a resistor divider to obtain the shutdown threshold and hysteresis for the specific application. the thresholds can be determined as below: vuvp=[1.2-(i hys +initial)xr3]x(r1+r2)/r2 hysteresis=i hys x r3 x (r1+r2)/r2 i hys =4.6ua(typ) initial=1.1ua(typ) ic will shutdown when vsystem voltage is lower than vuvp. ic will ralease when vsystem voltage is above than vuvp+hysteresis. with the condition: r3 >> r1// r2 for example, to obtain vuvp=3.7v and 0.9v hysteresis, r1=3k w , r2=1k w and r3=50k w . figure 2. under-voltage protection vsystem r1 3k w r2 1k w r3 50k w uvp pin 1.2v 5.7 m a
copyright ? anpec electronics corp. rev. a.9 - apr., 2017 www.anpec.com.tw 19 apa2606 application information square wave into the speaker apply the square wave into the speaker may cause the voice coil of speaker jumping out the air gap and defacing the voice coil. however, this depends on the amplitude of square wave is high enough and the bandwidth of speaker is higher than the square wave s frequency. for 500khz switching frequency, this is not issued for the speaker because the frequency is beyond the audio band and can t significantly move the voice coil, as cone movement is proportional to 1/f 2 for frequency out of audio band. input resistor, r i for achieving the 64 steps gain setting, it varies the input resistance network (r i & r f ) of amplifier. the input resistor s range form smallest to maximum is about six times. therefore, the input high-pass filter s low cutoff frequency will change six times from low to high. the cutoff frequency can be calculated by equation 1. input capacitor, c i in the typical application, an input capacitor, c i , is required to allow the amplifier to bias the input signal to the proper dc level for optimum operation. in this case, c i and the input impedance r i form a high-pass filter with the corner frequency determined in the following equation: (1) i i ) c(highpass c r 2 1 f p = the value of c i must be considered carefully because it directly affects the low frequency performance of the circuit. where r i is 36k w (minimum) and the specification calls for a flat bass response down to 50hz. the equation is reconfigured as below: (2) c i i f r 2 1 c p = when the input resistance variation is considered, the c i is 0.08 m f, so a value in the range of 0.01 m f to 0.022 m f would be chosen. a further consideration for this capaci- tor is the leakage path from the input source through the input network (r i + r f , c i ) to the load. this leakage current creates a dc offset voltage at the input to the amplifier that reduces useful headroom, especially in high gain applications. for this reason, a low-leakage tantalum or ceramic capacitor is the best choice. when polarized ca- pacitors are used, the positive side of the capacitor should face the amplifiers input in most applications because the dc level of the amplifiers inputs are held at v dd /2. please note that it is important to confirm the capacitor polarity in the application. gain vs. input resistance gain (db) i n p u t r e s i s t a n c e ( k w ) 20 30 40 50 60 70 80 90 100 110 120 130 140 -40-35-30-25-20-15-10-5 0 5 101520 effective bypass capacitor, c b as with any power amplifier, proper supply bypassing is critical for low noise performance and high power supply rejection. the bypass capacitance sffects the startiup time. it is determined in the following wquation: the capacitor location on the bypass pin should be as close to the device as possible. the effect of a larger half bypass capacitor is improved psrr due to increased half-supply stability. the selection of bypass capacitors, especially c b , is thus dependent upon desired psrr requirements, click and pop performance.to avoid the start-up pop noise occurred, choose c i which is not larger than c b . t start-up =0.5(sec/ m f) x c b + 0.2(sec) (3)
copyright ? anpec electronics corp. rev. a.9 - apr., 2017 www.anpec.com.tw 20 apa2606 application information (cont.) figure 3. ferrite bead output filter v on v op 4 w 1nf 1nf ferrite bead ferrite bead figure 4 and 5 are examples for added the lc filter (butterworth), it s recommended for the situation that the trace form amplifier to speaker is too long and needs to eliminate the radiated emission or emi. figure 4. lc output filter for 8 w speaker outp outn 8 w 1 m f 36 m h 36 m h 1 m f figure 5. lc output filter for 4 w speaker outp outn 4 w 2.2 m f 18 m h 18 m h 2.2 m f figure 4 and 5 s low pass filter cut-off frequency are 25khz (f c ). lc 2 1 f c(lowpass) p = (5) power-supply decoupling capacitor, c s the apa2606 is a high-performance cmos audio ampli- fier that requires adequate power supply decoupling to ensure the output total harmonic distortion (thd) is as low as possible. power supply decoupling also prevents the oscillations being caused by long lead length be- tween the amplifier and the speaker. ferrite bead selection if the traces form apa2606 to speaker are short, the ferrite bead filters can reduce the high frequency radiated to meet the fcc & ce required. a ferrite that has very low impedance at low frequencies and high impedance at high frequencies (above 1 mhz) is recommended. if the traces form apa2606 to speaker are short, it doesn t require output filter for fcc & ce standard. a ferrite bead may be needed if it s failing the test for fcc or ce tested without the lc filter. the figure 3 is the sample for added ferrite bead; the ferrite shows choosing high impedance in high frequency. output low-pass filter
copyright ? anpec electronics corp. rev. a.9 - apr., 2017 www.anpec.com.tw 21 apa2606 application information (cont.) the optimum decoupling is achieved by using two differ- ent types of capacitors that target on different types of noise on the power supply leads. for higher frequency transients, spikes, or digital hash on the line, a good low equivalent-series-resistance (esr) ceramic capacitor, typically 0.1 m f placed as close as possible to the device vdd pin for works best. for filtering lower frequency noise signals, a large aluminum electrolytic capacitor of 10 m f or greater placed near the audio power amplifier is recommended. power-supply decoupling capacitor, c s (cont.)
copyright ? anpec electronics corp. rev. a.9 - apr., 2017 www.anpec.com.tw 22 apa2606 package information ssop-24 s y m b o l min. max. 1.75 1.24 0.15 0.25 a a2 c d e e l h millimeters b 0.20 0.30 0.635 bsc ssop-24 (150mil) 0.25 0.50 0.40 1.27 0.025 bsc min. max. inches 0.069 0.049 0.008 0.012 0.006 0.010 0.010 0.020 0.016 0.050 q 0 o 8 o 0 o 8 o 0.10 a1 0.25 0.004 0.010 e1 3.80 4.00 0.150 0.158 5.80 6.20 0.228 0.244 8.56 8.76 0.337 0.345 view a seating plane gauge plane q 0 . 2 5 l a 1 a 2 a b e d e 1 e see view a c h x 4 5 o
copyright ? anpec electronics corp. rev. a.9 - apr., 2017 www.anpec.com.tw 23 apa2606 ssop-24p package information h x 4 5 o c see view a d2 e 2 e 1 e b e d c aaa nx a 2 a a 1 note : 1. rerfence to jedec mo-137 ae. 2. dimension "d" does not include mold flash, protrusions or gate burrs. mold flash, protrusion or gate burrs shall not exceed 6 mil per side. 3. dimension "e" does not include inter-lead flash or protrusions. inter-lead flash and protrusions shall not exceed 10 mil per side. 0 . 2 5 l view a q gauge plane seating plane s y m b o l min. max. 1.75 1.24 0.15 0.25 a a2 c d e e l h millimeters b 0.20 0.30 0.635 bsc ssop-24p 0.25 0.50 0.40 1.27 0.025 bsc min. max. inches 0.069 0.049 0.008 0.012 0.006 0.010 0.010 0.020 0.016 0.050 0 o 8 o 0 o 8 o 0.10 a1 0.25 0.004 0.010 e1 3.80 4.00 0.150 0.158 5.80 6.20 0.228 0.244 8.56 8.76 0.337 0.345 0.158 d2 3.20 4.00 0.126 0.110 e2 2.00 2.80 0.079 aaa 0.004 0.10 q
copyright ? anpec electronics corp. rev. a.9 - apr., 2017 www.anpec.com.tw 24 apa2606 application a h t1 c d d w e1 f 330 2.00 50min 24.40+2.00 -0.00 13.0+0.50 -0.20 1.5min 20.2min 24.0 0.30 1.75 0.10 11.5 0.10 p0 p1 p2 d0 d1 t a0 b0 k0 ssop-24 4.0 0.10 12.0 0.10 2.0 0.10 5+0.10 -0.00 1.5min 0.60+0.00 -0.40 8.50 0.10 13.50 0.10 2.60 0.10 application a h t1 c d d w e1 f 330.0 2.00 50 min. 16.4+2.00 -0.00 13.0+0.50 -0.20 1.5 min. 20.2 min. 16.0 0.30 1.75 0.10 7.50 0.10 p0 p1 p2 d0 d1 t a0 b0 k0 ssop-24p 4.0 0.10 8.0 0.10 2.0 0.10 1.5+0.10 -0.00 1.5 min. 0.6+0.00 -0.40 6.40 0.20 9.00 0.20 2.10 0.20 (mm) carrier tape & reel dimensions devices per unit package type unit quantity ssop-24 tape & reel 2500 ssop-24p tape & reel 2500 h t1 a d a e 1 a b w f t p0 od0 b a0 p2 k0 b 0 section b-b section a-a od1 p1
copyright ? anpec electronics corp. rev. a.9 - apr., 2017 www.anpec.com.tw 25 apa2606 taping direction information ssop-24 user direction of feed ssop-24p user direction of feed
copyright ? anpec electronics corp. rev. a.9 - apr., 2017 www.anpec.com.tw 26 apa2606 profile feature sn-pb eutectic assembly pb-free assembly preheat & soak temperature min (t smin ) temperature max (t smax ) time (t smin to t smax ) (t s ) 100 c 150 c 60-120 seconds 150 c 200 c 60-120 seconds average ramp-up rate (t smax to t p ) 3 c/second max. 3 c/second max. liquidous temperature (t l ) time at liquidous (t l ) 183 c 60-150 seconds 217 c 60-150 seconds peak package body temperature (t p )* see classification temp in table 1 see classification temp in table 2 time (t p )** within 5 c of the specified classification temperature (t c ) 20** seconds 30** seconds average ramp-down rate (t p to t smax ) 6 c/second max. 6 c/second max. time 25 c to peak temperature 6 minutes max. 8 minutes max. * tolerance for peak profile temperature (t p ) is defined as a supplier minimum and a user maximum. ** tolerance for time at peak profile temperature (t p ) is defined as a supplier minimum and a user maximum. classification reflow profiles classification profile
copyright ? anpec electronics corp. rev. a.9 - apr., 2017 www.anpec.com.tw 27 apa2606 customer service anpec electronics corp. head office : no.6, dusing 1st road, sbip, hsin-chu, taiwan tel : 886-3-5642000 fax : 886-3-5642050 taipei branch : 2f, no. 11, lane 218, sec 2 jhongsing rd., sindian city, taipei county 23146, taiwan tel : 886-2-2910-3838 fax : 886-2-2917-3838 table 1. snpb eutectic process C classification temperatures (tc) package thickness volume mm 3 <350 volume mm 3 3 350 <2.5 mm 235 c 220 c 3 2.5 mm 220 c 220 c table 2. pb-free process C classification temperatures (tc) package thickness volume mm 3 <350 volume mm 3 350-2000 volume mm 3 >2000 <1.6 mm 260 c 260 c 260 c 1.6 mm C 2.5 mm 260 c 250 c 245 c 3 2.5 mm 250 c 245 c 245 c reliability test program test item method description solderability jesd-22, b102 5 sec, 245 c holt jesd-22, a108 1000 hrs, bias @ t j =125 c pct jesd-22, a102 168 hrs, 100 % rh, 2atm, 121 c tct jesd-22, a104 500 cycles, -65 c~150 c hbm mil-std-883-3015.7 vhbm R 2kv mm jesd-22, a115 vmm R 200v latch-up jesd 78 10ms, 1 tr R 100ma classification reflow profiles (cont.)


▲Up To Search▲   

 
Price & Availability of APA2606NAI-TRG

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X